yellowbrick Documentation
Siriim 0.5

District Data Labs

07 May 2018

Igindekiler

1 Gorsellestiriciler 3
1.1 Ozellik GOrselleStirme v v v e e e e e e e e 3
1.2 Klasifikasyon Gorsellestirme L e 3
1.3 Regresyon Gorsellestirme L e e e e e e 4
1.4 Kimesel Gorsellestirme L e e 4
1.5 Metin GOrsellestirmesi v v v e e e e e e e e e e e e e e e e 4
2 Yardmm icin 5
3 Ack Kaynak 7
4 Icindekiler Tablosu 9
4.1 HizliBaslangic e e e e e e e 9
4.2 Model Secim Egitseli 17
4.3 Gorsellestiriciler ve APT00 31
4.4 Kullanici Testi Talimatlart0 000 L e 133
45 KatkidaBulunun 135
4.6 Efektif Matplotlib 144
47 Hakkinda 151
4.8 Degisiklik Kayitlarto 153
5 Dizinler ve Tablolar 161
Python Modiil Dizini 163

yellowbrick Documentation, Siiriim 0.5

Yellowbrick ‘e hosgeldiniz.
Suanda Yellowbrick Tiirk¢e dokiimantasyonu iizerinde ¢alismaktayiz. Liitfen sayfamiza tekrar ugrayiniz.

Ayrica yardim tekliflerinize agi181z. Tiirkce terclime i¢in katkida bulunmak isterseniz yellowbrick-docs-tr adresine pull
request sorgusu gonderebilirsiniz. Eger Yellowbrick i¢in katkida bulunmak isterseniz codebase adresine pull request
sorgusu gonderebilirsiniz.

Pearson Ranking of 23 Features Residuals for Ridge Model TSNE Projection of 448 Documents

Training Data

TestData

0
oe o

b1 . w L)
o oo G131 A e

> 7 %
p

0 0 &
10 15 2 Predicled Value

Yellowbrick, insanlarin model se¢im siirecini yonlendirmeye izin veren “Gorsellestirici” adi verilen Scikit-Learn
API‘sini genigleten gorsel tani araglari paketidir. Kisacas1 Yellowbrick, Scikit-Learn‘i Matplotlib ile Scikit-Learn do-
kiimantasyonuna gore birlestirerek modelinize gore gorsellestirme tiretmektedir. Yellowbrick ile ilgili daha fazlasi igin,
litfen bakimz: Hakkinda.

Eger Yellowbrick‘te yeniyseniz, Hizli Baslangi¢ ya da bu kismi gecerek Model Secim Egitseli kismini ziyaret edebilir-
siniz. Yellowbrick, diizenli olarak eklenen bircok gorsellestiricisi ile zengin bir kiitiiphanedir. Spesifik Gorsellestiriciler
ve genigletilmis kullanimlan ile ilgili detaylar1 Gorsellestiriciler ve API kismindan bulabilirsiniz. Yellowbrick ‘e kat-
kida bulunmak ister misiniz? contributing guide sayfasina goz atabilirsiniz. Sayet kullanici testi icin bagvurduysaniz,
Kullanici Testi Talimatlar: sayfasina bakiniz.(ve Tegekkiir ederiz)

icindekiler 1

https://github.com/DistrictDataLabs/yellowbrick-docs-tr
https://github.com/DistrictDataLabs/yellowbrick
http://scikit-learn.org/stable/developers/contributing.html#contributing

yellowbrick Documentation, Siiriim 0.5

2 icindekiler

BOLOM 1

Gorsellestiriciler

Gorsellestiriciler, oncelikli amaci model sec¢im islemine i¢gdrii saglamaya izin veren gorsellestirmeleri olugturan tah-
min edicilerdir(veriden 6grenilen nesneler). Scikit-Learn‘e gore, Gorsellestiriciler; veri alanini gorsellestirirken, do-
niistiiriiciilere benzeyebilir ya da “ModelCV” (e.g. RidgeCV, LassoCV) metodlarin caligmasinda oldugu gibi, bir
model tahmin edicisini sarabilmektedir. Yellowbrick ‘in 6ncelikli amaci, Scikit-Learn benzeri bir mantiksal API olus-
turmaktir. En populer gorsellestiricilerimizden bazilar1 sunlardir:

1.1 Ozellik Gérsellestirme

* Rank Features: iligki saptamast i¢in 6zelliklerin ikili olarak siralanmasi

e Parallel Coordinates: 6zelliklerin yatay gorsellestirilmesi

* Radial Visualization: drneklerin bir dairesel alanda ayrilmasi

e PCA Projection: ana bilegenlere gore drneklerin gosterimi

 Feature Importances: spesifik bir model i¢in dnem veya dogrusal katsayisina gore dzellik siralamasi

* Scatter and Joint Plots: 6zellik secimi ile dogrudan veri gorsellestirimi

1.2 Klasifikasyon Gorsellestirme

* Class Balance: simiflarin dagiliminin modeli nasil etkilediginin gosterimi
e Classification Report: precision, recall, ve F1 gorsel temsili
* ROC/AUC Curves: islem karakteristik egrisi ve egri altinda kalan alan

* Confusion Matrices: simif karar veriminin gorsel agiklamast

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeCV.html
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoCV.html

yellowbrick Documentation, Siiriim 0.5

1.3 Regresyon Gorsellestirme

* Prediction Error Plot: hedef alan1 boyunca olugan model hatalarinin bulunmasi
* Residuals Plot: egitim ve test verisi rezidiiellerindeki farkin gosterimi

* Alpha Selection: alfa deger seciminin regiilasyonu nasil etkilediginin gosterimi

1.4 Kimesel Gorsellestirme

e K-Elbow Plot: elbow metodu ve ¢esitli metriklerin kullanimu ile k se¢imi

* Silhouette Plot: siluet katsay1s1 degerlerinin gorsellestirimi ile k se¢imi

1.5 Metin Gorsellestirmesi

e Term Frequency: metin govdesi icinde bulunan terimlerin dagilim sikliginin gorsellestirimi
* t-SNE Corpus Visualization: proje dokiimanina stokastik yakinsal yerlestirimin kullanilmasi

. ve daha fazlas1! Yeni gorsellestiriciler siirekli olarak eklenmekte; 6rnekleri kontrol ettiginizden emin olun (ya da
hatta develop branch) ve yeni gorsellestiricilerle ilgili fikirlerinizle katkida bulunmaktan liitfen ¢cekinmeyin.

4 Boéliim 1. Gorsellestiriciler

https://github.com/DistrictDataLabs/yellowbrick/tree/develop

BOLOM 2

Yardim icin

Yellowbrick, Matplotlib ve Scikit-Learn geleneginde oldugu gibi kapsamli ve herkesi davet eden bir projedir. Bu proje-
lere benzer olarak Python Software Foundation Code of Conduct dlgiitlerini takip etmeye calistyoruz. Liitfen yardima
ihtiyaciniz oldugunda ya da herhangi bir katkida bulunmak isterseniz veyahut bug bulursaniz bizlere ¢ekinmeden
ulagabilirsiniz.

Yellowbrick yardimi i¢in ilk yol bu isteginizi gonderi olarak Google Groups Listserv kisminda paylagsmaniz. Top-
luluk tiyelerinin katilim gosterebildigi ve iiyelerin birbirlerine cevap verebildigi email liste/forumu olup, burada en
hizli gekilde yanit alabilirsiniz. Liitfen gruba katilmay: diisiintin, boylelikle siz de sorulari cevaplayabilirsiniz. Ayrica
Stack Overflow da soru sorabilir ve sorularinizi “yellowbrick™ olarak etiketleyebilirsiniz. Ya da Github iizerinde Issues
kismina ekleme yapabilirsiniz. Veya Twitter hesabimiza @DistrictDatalLab tweet ya da direk mesaj atabilirsiniz.

http://www.python.org/psf/codeofconduct/
https://groups.google.com/forum/#!forum/yellowbrick
http://stackoverflow.com/questions/tagged/yellowbrick
https://twitter.com/districtdatalab

yellowbrick Documentation, Siiriim 0.5

6 B6liim 2. Yardim igin

BOLUM 3

Acik Kaynak

Yellowbrick lisansi acgik kaynakli bir Apache 2.0 lisansidir. Yellowbrick ¢ok aktif gelistirici topluluguna sahip olup;
litfen sizde katilmay1 ve katkida bulunmay: diigtiniin!

Yellowbrick GitHub tizerinde bulunmaktadir. issues ve pull requests detaylarini bu linklerden takip edebilirsiniz.

https://github.com/DistrictDataLabs/yellowbrick/blob/master/LICENSE.txt
http://www.apache.org/licenses/LICENSE-2.0
https://github.com/DistrictDataLabs/yellowbrick/blob/develop/CONTRIBUTING.md
https://github.com/DistrictDataLabs/yellowbrick/
https://github.com/DistrictDataLabs/yellowbrick/issues/
https://github.com/DistrictDataLabs/yellowbrick/pulls

yellowbrick Documentation, Siiriim 0.5

8 Boéliim 3. Acik Kaynak

BOLUM 4

icindekiler Tablosu

Kiitiiphanenin bu versiyonu i¢in olan Yellowbrick dokiimantasyonunun tiim listesini asagida bulabilirsiniz:

4.1 Hizh Baslangic

Yellowbrick’te yeniyseniz, bu kilavuz baglamaniza ve makine 6grenimi i akisiniza gorsellestiricileri dahil etmenize
yardimci olacaktir. Fakat baslamadan once, gelistirme ortamlartyla ilgili dikkate almaniz gereken birkag¢ not bulun-
makta.

Yellowbrick’in iki temel bagliligi bulunmaktadir: Scikit-Learn ve Matplotlib. Sayet bu Python paketleriniz yoksa,
Yellowbrick’le birlikte kurulacaktir. Yellowbrick, Scikit-Learn 0.18 versiyonu veya iistii ve Matplotlib 2.0 versiyonu ve
tistii ile en iyi ¢alistigini dikkate aliniz. Her iki paketin de derlenmesi icin Windows gibi sistemler tizerinde derlenmesi
zor olan bazi C kodlarina gereksinim duymaktadir. Sayet problem yasiyorsaniz Anaconda gibi bu paketleri de igeren
bir Python dagitimini deneyebilirsiniz.

Yellowbrick is also commonly used inside of a Jupyter Notebook alongside Pandas data frames. Notebooks make it
especially easy to coordinate code and visualizations, however you can also use Yellowbrick inside of regular Python
scripts, either saving figures to disk or showing figures in a GUI window. If you’re having trouble with this, please
consult Matplotlib’s backends documentation.

Not: Jupyter, Pandas, and other ancillary libraries like NLTK for text visualizers are not installed with Yellowbrick
and must be installed separately.

4.1.1 Kurulum

Yellowbrick, Python 2.7 ve iist siiriimleri ile uyumludur fakat Yellowbrick ‘in tiim iglevlerinden yararlanmak i¢in Pyt-
hon 3.5 ve iist siiriimlerinin kullanimi tercih edilmektedir. Yellowbrick ‘i kurmanin en kolay yolu, PyPI ‘den Python‘un
tercih edilen paket kurulumcusu pip kullanimidir.

http://scikit-learn.org/
http://matplotlib.org/
https://anaconda.org
http://jupyter.org/
http://pandas.pydata.org/
https://matplotlib.org/faq/usage_faq.html#what-is-a-backend
https://pypi.python.org/pypi/yellowbrick
https://docs.python.org/3/installing/

yellowbrick Documentation, Siiriim 0.5

’$ pip install yellowbrick

Note that Yellowbrick is an active project and routinely publishes new releases with more visualizers and updates. In
order to upgrade Yellowbrick to the latest version, use pip as follows.

’$ pip install -u yellowbrick

You can also use the —u flag to update Scikit-Learn, matplotlib, or any other third party utilities that work well with
Yellowbrick to their latest versions.

If you’re using Windows or Anaconda, you can take advantage of the conda utility to install the Anaconda Yellowbrick
package:

conda install -c districtdatalabs yellowbrick

Uyar1: There is a known bug installing matplotlib on Linux with Anaconda. If you’re having trouble please let us
know on GitHub.

Once installed, you should be able to import Yellowbrick without an error, both in Python and inside of Jupyter
notebooks. Note that because of matplotlib, Yellowbrick does not work inside of a virtual environment without jumping
through some hoops.

4.1.2 Yellowbrick Kullanimi

The Yellowbrick API is specifically designed to play nicely with Scikit-Learn. The primary interface is therefore a
Visualizer — an object that learns from data to produce a visualization. Visualizers are Scikit-Learn Estimator
objects and have a similar interface along with methods for drawing. In order to use visualizers, you simply use the
same workflow as with a Scikit-Learn model, import the visualizer, instantiate it, call the visualizer’s £it () method,
then in order to render the visualization, call the visualizer’s poof () method, which does the magic!

For example, there are several visualizers that act as transformers, used to perform feature analysis prior to fitting a
model. Here is an example to visualize a high dimensional data set with parallel coordinates:

from yellowbrick.features import ParallelCoordinates

visualizer = ParallelCoordinates|()
visualizer.fit_transform (X, vy)
visualizer.poof ()

As you can see, the workflow is very similar to using a Scikit-Learn transformer, and visualizers are intended to be
integrated along with Scikit-Learn utilities. Arguments that change how the visualization is drawn can be passed into
the visualizer upon instantiation, similarly to how hyperparameters are included with Scikit-Learn models.

The poof () method finalizes the drawing (adding titles, axes labels, etc) and then renders the image on your behalf.
If you’re in a Jupyter notebook, the image should just appear. If you’re in a Python script, a GUI window should open
with the visualization in interactive form. However, you can also save the image to disk by passing in a file path as
follows:

visualizer.poof (outpath="pcoords.png")

The extension of the filename will determine how the image is rendered, in addition to the .png extension, .pdf is also
commonly used.

10 Bolim 4. icindekiler Tablosu

https://conda.io/docs/intro.html
https://anaconda.org/DistrictDataLabs/yellowbrick
https://anaconda.org/DistrictDataLabs/yellowbrick
https://github.com/DistrictDataLabs/yellowbrick/issues/205
http://scikit-learn.org/stable/developers/contributing.html#apis-of-scikit-learn-objects

yellowbrick Documentation, Siiriim 0.5

Not: Data input to Yellowbrick is identical to that of Scikit-Learn: a dataset, X, which is a two-dimensional matrix
of shape (n,m) where n is the number of instances (rows) and m is the number of features (columns). The dataset
X can be a Pandas DataFrame, a Numpy array, or even a Python list of lists. Optionally, a vector y, which represents
the target variable (in supervised learning), can also be supplied as input. The target v must have length n — the same
number of elements as rows in X and can be a Pandas Series, Numpy array, or Python list.

Visualizers can also wrap Scikit-Learn models for evaluation, hyperparameter tuning and algorithm selection. For
example, to produce a visual heatmap of a classification report, displaying the precision, recall, F1 score, and support
for each class in a classifier, wrap the estimator in a visualizer as follows:

from yellowbrick.classifier import ClassificationReport
from sklearn.linear model import LogisticRegression

model = LogisticRegression()
visualizer = ClassificationReport (model)

visualizer.fit (X_train, y_train)
visualizer.score (X_test, y_test)
visualizer.poof ()

Only two additional lines of code are required to add visual evaluation of the classifier model, the instantiation of a
ClassificationReport visualizer that wraps the classification estimator and a call to its poof () method. In
this way, Visualizers enhance the machine learning workflow without interrupting it.

The class-based API is meant to integrate with Scikit-Learn directly, however on occasion there are times when you
just need a quick visualization. Yellowbrick supports quick functions for taking advantage of this directly. For example,
the two visual diagnostics could have been instead implemented as follows:

from sklearn.linear model import LogisticRegression

from yellowbrick.features import parallel_coordinates
from yellowbrick.classifier import classification_report

Displays parallel coordinates
g = parallel_coordinates (X, y)

Displays classification report
g = classification_report (LogisticRegression(), X, vy)

These quick functions give you slightly less control over the machine learning workflow, but quickly get you diagnos-
tics on demand and are very useful in exploratory processes.

4.1.3 Aciklamalar

Consider a regression analysis as a simple example of the use of visualizers in the machine learning workflow. Using
a bike sharing dataset based upon the one uploaded to the UCI Machine Learning Repository, we would like to predict
the number of bikes rented in a given hour based on features like the season, weather, or if it’s a holiday.

Not: We have updated the dataset from the UCI ML repository to make it a bit easier to load into Pandas; make sure
you download the Yellowbrick version of the dataset.

After downloading the dataset and unzipping it in your current working directory, we can load our data as follows:

4.1. Hizh Baslangic 11

https://s3.amazonaws.com/ddl-data-lake/yellowbrick/bikeshare.zip
https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
https://s3.amazonaws.com/ddl-data-lake/yellowbrick/bikeshare.zip

yellowbrick Documentation, Siiriim 0.5

import pandas as pd

data = pd.read_csv('bikeshare.csv')

X = datal]
"season", "month", "hour", "holiday", "weekday", "workingday",
"weather", "temp", "feelslike", "humidity", "windspeed"

11

y = data["riders"]

The machine learning workflow is the art of creating model selection triples, a combination of features, algorithm, and
hyperparameters that uniquely identifies a model fitted on a specific data set. As part of our feature selection, we want
to identify features that have a linear relationship with each other, potentially introducing covariance into our model
and breaking OLS (guiding us toward removing features or using regularization). We can use the Rank2D visualizer
to compute Pearson correlations between all pairs of features as follows:

from yellowbrick.features import Rank2D

visualizer = Rank2D(algorithm="pearson")
visualizer.fit_transform(X)
visualizer.poof ()

Pearson Ranking of 11 Features

1.00
10
. 0.75
0.50
8
0.25
6
0.00
4 -0.25
. -0.50
2
-0.75
0 -1.00
0 2 4 6 8 10

This figure shows us the Pearson correlation between pairs of features such that each cell in the grid represents two
features identified in order on the x and y axes and whose color displays the magnitude of the correlation. A Pearson
correlation of 1.0 means that there is a strong positive, linear relationship between the pairs of variables and a value
of -1.0 indicates a strong negative, linear relationship (a value of zero indicates no relationship). Therefore we are
looking for dark red and dark blue boxes to identify further.

In this chart we see that features 7 (temperature) and feature 9 (feelslike) have a strong correlation and also that feature

12 Bolim 4. icindekiler Tablosu

http://www.scikit-yb.org/en/latest/api/yellowbrick.features.html#module-yellowbrick.features.rankd

yellowbrick Documentation, Siiriim 0.5

0 (season) has a strong correlation with feature 1 (month). This seems to make sense; the apparent temperature we feel
outside depends on the actual temperature and other airquality factors, and the season of the year is described by the
month! To dive in deeper, we can use the JointPlotVisualizer to inspect those relationships.

from yellowbrick.features import JointPlotVisualizer

visualizer = JointPlotVisualizer (feature='temp', target='feelslike')
visualizer.fit (X['temp'], X['feelslike'])
visualizer.poof ()

1.0

0.8

0.6

Teelslike

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0
temp

This visualizer plots a scatter diagram of the apparent temperature on the y axis and the actual measured temperature
on the x axis and draws a line of best fit using a simple linear regression. Additionally, univariate distributions are
shown as histograms above the x axis for temp and next to the y axis for feelslike. The JointPlotVisualizer
gives an at-a-glance view of the very strong positive correlation of the features, as well as the range and distribution
of each feature. Note that the axes are normalized to the space between zero and one, a common technique in machine

4.1. Hizh Baslangic 13

http://www.scikit-yb.org/en/latest/api/yellowbrick.features.html#module-yellowbrick.features.jointplot

yellowbrick Documentation, Siiriim 0.5

learning to reduce the impact of one feature over another.

This plot is very interesting; first there appear to be some outliers in the dataset, where feelslike is approximately equal
to 0.25. These instances may need to be manually removed in order to improve the quality of the final model because
they could represent data input errors. Secondly, we can see that more extreme temperatures create an exaggerated
effect in perceived temperature; the colder it is, the colder people are likely to believe it to be, and the warmer it is, the
warmer it appears to be. Moderate temperatures feel like they do. This gives us the intuition that feelslike may be a
better feature than temp, and if it is causing problems in our regression analysis, we should probably remove the temp
variable in favor of feels like.

At this point, we can train our model; let’s fit a linear regression to our model and plot the residuals.

from yellowbrick.regressor import ResidualsPlot
from sklearn.linear model import LinearRegression
from sklearn.model_selection import train_test_split

Create training and test sets
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.1

visualizer = ResidualsPlot (LinearRegression())
visualizer.fit (X_train, y_train)
visualizer.score (X_test, y_test)
visualizer.poof ()

Residuals for LinearRegression Model
400

® Training Data)
© TestData

200

-200

Residuals

-400

-600

-100 0 100 200 300 400
Predicted Value

The residuals plot shows the error against the predicted value, and allows us to look for heteroskedasticity in the
model; e.g. regions in the target where the error is greatest. The shape of the residuals can strongly inform us where
OLS (ordinary least squares) is being most strongly effected by the components of our model (namely the features).

14 Béliim 4. igindekiler Tablosu

yellowbrick Documentation, Siiriim 0.5

In this case, we can see that the lower the predicted value (the lower the number of riders), the lower the error, but
the higher the number of predicted riders, the higher the error. This indicates that our model has more noise in certain
regions of the target or that two variables are colinear, meaning that they are injecting error as the noise in their
relationship changes.

The residuals plot also shows how the model is injecting error, the bold horizontal line at residuals = 0 is no
error, and any point above or below that line indicates the magnitude of error. For example, most of the residuals are
negative, and since the score is computed as actual - expected, this means that the expected value is bigger
than the actual value most of the time, e.g. that our model is primarily guessing more than the actual number of riders.
Moreover, there is a very interesting boundary along the top right of the residuals graph, indicating an interesting affect
in model space; possibly that some feature is strongly weighted in the region of that model.

Finally the residuals are colored by training and test set. This helps us identify errors in creating train and test splits.
If the test error doesn’t match the train error then our model is either overfit or underfit. Otherwise it could be an error
in shuffling the dataset before creating the splits.

Because our coefficient of determination for this model is 0.328, let’s see if we can fit a better model using regulari-
zation, and explore another visualizer at the same time.

import numpy as np

from sklearn.linear model import RidgeCV
from yellowbrick.regressor import AlphaSelection

alphas = np.logspace(-10, 1, 200)

visualizer = AlphaSelection (RidgeCV (alphas=alphas))
visualizer.fit (X, vy)

visualizer.poof ()

+2.172e4 RidgeCV Alpha Error
4.0

3.8

w
o

w
~

error (or score)

3.2

3.0 ——— ridge
-—= q=3.181

0 2 4 6 8 10

4.1. Hizh Baslangic 15

yellowbrick Documentation, Siiriim 0.5

When exploring model families, the primary thing to consider is how the model becomes more complex. As the model
increases in complexity, the error due to variance increases because the model is becoming more overfit and cannot
generalize to unseen data. However, the simpler the model is the more error there is likely to be due to bias; the model
is underfit and therefore misses its target more frequently. The goal therefore of most machine learning is to create a
model that is just complex enough, finding a middle ground between bias and variance.

For a linear model, complexity comes from the features themselves and their assigned weight according to the model.
Linear models therefore expect the least number of features that achieves an explanatory result. One technique to ac-
hieve this is regularization, the introduction of a parameter called alpha that normalizes the weights of the coefficients
with each other and penalizes complexity. Alpha and complexity have an inverse relationship, the higher the alpha, the
lower the complexity of the model and vice versa.

The question therefore becomes how you choose alpha. One technique is to fit a number of models using cross-
validation and selecting the alpha that has the lowest error. The AlphaSelection visualizer allows you to do just
that, with a visual representation that shows the behavior of the regularization. As you can see in the figure above, the
error decreases as the value of alpha increases up until our chosen value (in this case, 3.181) where the error starts to
increase. This allows us to target the bias/variance trade-off and to explore the relationship of regularization methods
(for example Ridge vs. Lasso).

‘We can now train our final model and visualize it with the PredictionError visualizer:

from sklearn.linear _model import Ridge
from yellowbrick.regressor import PredictionError

visualizer = PredictionError (Ridge (alpha=3.181))
visualizer.fit (X_train, y_train)
visualizer.score (X_test, y_test)
visualizer.poof ()

Prediction Error for Ridge

400

300

200

Predicted

100

0 200 400 600 800
Measured

16 Bolim 4. icindekiler Tablosu

yellowbrick Documentation, Siiriim 0.5

The prediction error visualizer plots the actual (measured) vs. expected (predicted) values against each other. The
dotted black line is the 45 degree line that indicates zero error. Like the residuals plot, this allows us to see where error
is occurring and in what magnitude.

In this plot we can see that most of the instance density is less than 200 riders. We may want to try orthogonal matching
pursuit or splines to fit a regression that takes into account more regionality. We can also note that that weird topology
from the residuals plot seems to be fixed using the Ridge regression, and that there is a bit more balance in our
model between large and small values. Potentially the Ridge regularization cured a covariance issue we had between
two features. As we move forward in our analysis using other model forms, we can continue to utilize visualizers to
quickly compare and see our results.

Hopefully this workflow gives you an idea of how to integrate Visualizers into machine learning with Scikit-Learn
and inspires you to use them in your work and write your own! For additional information on getting started with
Yellowbrick, check out the Model Secim Egitseli. After that you can get up to speed on specific visualizers detailed in
the Gorsellestiriciler ve API.

4.2 Model Sec¢im Egitseli

Bu egitselde, ¢esitli Scikit-Learn modellerinin skorlarina bakacagiz ve bunlar1 Yellowbrick gorsel tam araglarimi kul-
lanarak sirayla verilerimize gore en iyi modelin se¢imi i¢in karsilagtiracagiz.

4.2.1 Model Secim Ucliisii

Makine 6grenimi tartigmalari sik sik model secimi iizerine tekil odaklanma ile karakterize edilir. Gerek lojistik regres-
yon, karar agaclari, Bayesian methodlar1 veya yapay sinir aglar1 olsun; makine 6grenmesi uygulayicilari tercihlerini
genellikle hizli bir sekilde agiklarlar. Bunun nedeni ¢ogunlukla tarihseldir. Modern {igiincii parti makine 6grenimi
kiitiiphaneleri birgok modelin yayilmasim1 6nemsiz olarak gosterse de, geleneksel olarak bu algoritmalardan birinin
bile uygulamasi ve ayarlanmasi yillar siiren ¢aligma gerektirmistir. Sonu¢ olarak makine 6grenmesi uygulayicilar
digerlerine gore daha belirgin (ve muhtemelen daha yaygin olan) algoritmalar1 daha ¢ok tercih etmeye yonelmistir.

Bununla birlikte, model secimi basit sekilde “dogru” ya da “yanlis” algoritmay1 se¢mekten biraz daha niianshdir.
Pratik olarak is akig1 sunlar icermektedir:

1. en kiicgiik ve en kestirici tahmin kiimesi se¢imi ya da olusturumu
2. bir dizi algoritmalarin bir model ailesinden secimi ve
3. performans optimizesi i¢in algoritma hiperparametlerinin ayarlanmasi

Kumar et al tarafindan model secim iicliisii 2015 yilt SIGMOD makalesinde ilk defa tanimlanmigtir. Makale iceri-
sinde, tahmin edici modelleme 6ngoriisii icin ingaa edilen yeni nesil veritabani sistemlerinin gelisimiyle ilgili olarak,
makale yazarlar1 pratikte makine 6greniminin biiyiik l¢iide deneysel yapisi sebebiyle bu tiir sistemlere ¢ok fazla ih-
tiyac oldugunu ifade ederler. “Model se¢imini,” su sekilde aciklarlar, “tekrarlayici ve kesifseldir ¢iinkii [model se¢im
ticliisii] alan1 genellikle sonsuzdur ve analiz¢iler i¢in yeterli dogruluk ve kavrayis saglayabilecek bir olas1 [kombinas-
yon] bilmek genelde imkansizdir.”

Son donemlerde makine 6grenimi is akiginin bityiik bir kismi; grid search yontemi, standartlagtirtlmis API ler ve GUI
tabanli uygulamalar yoluyla otomatize edilmistir. Bununla birlikte, pratikte insan sezgisi ve rehberligi, kaliteli mo-
deller iizerinde detayli arama yontemlerine gore daha efektif odaklanma saglamaktadir. Gorsel model se¢im islemi
yoluyla, veri bilimcileri; hatalara ve yanilgilara diismeden finale, agiklanabilir modellere dogru ilerleyis gosterebil-
mektedir.

Yellowbrick kiitiiphanesi, makine 6grenimi icin veri bilimcilerine model secim siirecine yon vermelerine olanak sag-
layan bir tan1 gorsellestirme platformudur. Yellowbrick, Scikit Learn API‘sini yeni bir temel obje ile genisletmistir:
Gorsellestirici. Gorsellestiriciler, cok boyutlu verilerin doniigiimii sirasinda gorsel tanilar sunarak, Scikit-Learn islem
siirecinin bir pargasi olarak gorsel modellerin uymasini ve doniisiimiinii saglamaktadir.

4.2. Model Secim Egitseli 17

http://scikit-learn.org
http://www.scikit-yb.org
http://cseweb.ucsd.edu/~arunkk/vision/SIGMODRecord15.pdf

yellowbrick Documentation, Siiriim 0.5

4.2.2 Veri Hakkinda

Bu egitselde UCI Machine Learning Repository adresinden alinan mantar veriseti nin diizenlenmig versiyonu kulla-
nilmaktadir. Amacimiz, bir mantarin karakteristik ozelliklerine gore zehirli ya da yenilebilir olup olmadigini tahmin
etmektir.

Veri, Agaricus ve Lepiota ailesine ait 23 ¢esit solungach mantar tiiriiyle ilgili varsayimsal orneklerin aciklamalarini
icermektedir. Her tiir, kesinlikle yenilebilir kesinlikle yenemez veya yenilebilirligi bilinmeyen ya da tavsiye edilmeyen
olarak tanimlanmistir. (bu son siif zehirli sinifi ile birlestirilmistir).

Dosyamiz, “agaricus-lepiota.txt,” 3 nominal degerli 6znitelikleri ve 8124 mantar 6rneginin hedef degerlerini icermek-
tedir. (4208 yenilebilir, 3916 zehirli).

Haydi Pandas ile verimizi yiikleyelim.

import os
import pandas as pd

names = [
'class',
'cap-shape’,
'cap-surface',
'cap-color'

mushrooms = os.path.join('data', "agaricus—lepiota.txt")
dataset = pd.read_csv (mushrooms)
dataset.columns = names

dataset .head()

. | class cap-shape | cap-surface | cap-color
0 | edible bell smooth white
1 | poisonous | convex scaly white
2 | edible convex smooth gray
3 | edible convex scaly yellow
4 | edible bell smooth white
features = ['cap-shape', 'cap-surface', 'cap-color']
target = ['class']
X = dataset[features]

y = dataset[target]

4.2.3 Ozellik Cikarimi

Verimiz, hedef de dahil olmak tizere kategoriktir. Makine 6grenmesi icin bu degerleri sayisal degerlere cevirmemiz ge-
rekecek. Sirastyla veri setimizden bunu saglamak amactyla, veri setinde bulunan degerleri bir modele uygun birseylere
doniistiirmemiz i¢in Scikit-Learn doniistiiriiciilerini kullanmamiz gerekmektedir. Neyseki Scikit-Learn, kategorik eti-
ketleri sayisal integer de8erlerine cevirecek doniistiiriicii saglamaktadir sklearn.preprocessing.LabelEncoder. Maalesef
tek seferde sadece bir vektorii doniistiirebiliriz, bu ylizden birden fazla siituna sirayla uygulamamiz i¢in uyarlama yap-
mamiz gerekiyor.

TransformerMixin
OneHotEncoder

from sklearn.base import BaseEstimator,
from sklearn.preprocessing import LabelEncoder,

(continues on next page)

18 Bolim 4. icindekiler Tablosu

http://archive.ics.uci.edu/ml/
https://github.com/rebeccabilbro/rebeccabilbro.github.io/blob/master/data/agaricus-lepiota.txt
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html

yellowbrick Documentation, Siiriim 0.5

(onceki sayfadan devam)

class EncodeCategorical (BaseEstimator, TransformerMixin):

mmn

Encodes a specified list of columns or all columns 1if None.
mmn

def _ init_ (self, columns=None) :
self.columns = [col for col in columns]
self.encoders = None

def fit(self, data, target=None):

mon

Expects a data frame with named columns to encode.
mmn
Encode all columns if columns 1is None
if self.columns is None:
self.columns = data.columns

Fit a label encoder for each column in the data frame
self.encoders = {

column: LabelEncoder ().fit (datal[column])

for column in self.columns
}

return self

def transform(self, data):

mwn

Uses the encoders to transform a data frame.
mmrn
output = data.copy ()
for column, encoder in self.encoders.items () :
output [column] = encoder.transform(data[column])

return output

4.2.4 Modelleme ve Degerlendirme

Siniflandirici Degerlendirmesi i¢in Genel Metrikler

Precision gercek olan pozitif sonuglarin toplam sayisinin, tiim pozitif ¢ikan sonuglarin sayisina bolinmesidir. (6r.
Yenilebilir olarak tahmin ettigimiz mantarlarin aslinda ne kadari gercekten yenilebilir).

Recall gercek olan pozitif sonuglarin toplam sayisinin, tiim pozitif ¢ikmasi gereken sonuglarin sayisina boliinmesidir.
(Or. Zehirli mantarlarin ne kadarm kesin zehirli olarak tahmin edebildik).

F1 score bir testin dogrulugunun 6l¢iistidiir. Bu skoru hesaplamak i¢in testin hem kesinlik hem de hassasiyeti dikkate
almmmaktadir. F1 skoru; en iyi deger 1 ve en kotii deger 0’a ulastg1 yerde, kesinlik ve hassasiyetin agirlikli ortalamasi
olarak da yorumlanabilir.

kesinlik = gergek pozitifler / (gergek pozitifler + yanlis pozitifler)
hassasiyet = gergek pozitifler / (yanlis negatifler + gergek pozitifler)

F1 skoru = 2 * ((kesinlik % hassasiyet) / (kesinlik + hassasiyet))

4.2. Model Secim Egitseli 19

yellowbrick Documentation, Siiriim 0.5

precision = true positives / (true positives + false positives)

recall = true positives / (false negatives + true positives)

Fl score = 2 * ((precision % recall) / (precision + recall))

Simdi baz1 tahminleri yapabilmek i¢in haziriz.

Birden fazla tahmin edicilerin degerlendirilmesi icin bir yol olusturalim — Oncelikle klasik say1sal skorlar1 (daha sonra
Yellowbrick kiitiiphanesinden bazi1 gorsel tan1 araglariyla karsilagtirma yapacagimiz) kullanarak.

from sklearn.metrics import fl_score
from sklearn.pipeline import Pipeline

def model_selection(X, y, estimator):

mmn

Test various estimators.

mmon

y = LabelEncoder () .fit_transform(y.values.ravel())
model = Pipeline (][
("label_encoding', EncodeCategorical (X.keys())),

("one_hot_encoder', OneHotEncoder()),
("estimator', estimator)

1)

Instantiate the classification model and visualizer
model.fit (X, vy)

expected =y
predicted = model.predict (X)

Compute and return the F1 score (the harmonic mean of precision and recall)
return (fl_score (expected, predicted))

Try them all!

from sklearn.svm import LinearSVC, NuSVC, SVC

from sklearn.neighbors import KNeighborsClassifier

from sklearn.linear model import LogisticRegressionCV, LogisticRegression,
—~SGDClassifier

from sklearn.ensemble import BaggingClassifier, ExtraTreesClassifier,
—RandomForestClassifier

’model_selection(x, y, LinearSVvC())

’0.65846308387744845

’model_selection(x, y, NuSvC())

’0.63838842388991346

’model_selection(x, y, SVC())

’0.66251459711950167

20 Bolim 4. icindekiler Tablosu

yellowbrick Documentation, Siiriim 0.5

’model_selection(x, y, SGDClassifier())

’0.69944182052382997

’model_selection(x, y, KNeighborsClassifier())

’0.65802139037433149

’model_selection(x, y, LogisticRegressionCV())

’0.65846308387744845

’model_selection(x, y, LogisticRegression())

’0.65812609897010799

’model_selection(x, y, BaggingClassifier())

’0.687643484132343

’model_selection(x, y, ExtraTreesClassifier())

’0.68713648045448383

’model_selection(x, y, RandomForestClassifier())

’0.69317131158367451

ilk Model Degerlendirmesi

Yukaridaki F1 skorlarinin sonuglarini baz aldiginizda hangi model en iyi performans: gdstermistir?

4.2.5 Gorsel Model Degerlendirmesi

Haydi simdi model degerlendirme fonksiyonumuzu, Yellowbrick ClassificationReport smifini kullanmak
icin tekrar diizenleyelim, bir model gorsellestiricisi; kesinlik, hassasiyet ve F1 skorlarii gostermektedir. Bu gorsel
model analiz araci renk kodlu 1s1 haritasinda oldugu gibi sayisal skorlari, kolay yorumlama ve saptamaya destek
amaciyla; ozellikle kullanim durumumuzdaki amaca uygun (hayat kurtarici, dengeli) Tip I ve Tip II hata niianslarini
birlestirir.

Tip I hata (veya “yanlis pozitif”’) mevcut olmayan bir etkiyi tespit eder. (6r. aslinda yenilebilir bir mantarin zehirli
olarak saptanmast).

Tip II hata (veya “yanhs negatif””) mevcut olan bir etkiyi tespit edememektir. (6r. aslinda zehirli bir mantarin yenile-
bilir olduguna inanilmasi).

from sklearn.pipeline import Pipeline
from yellowbrick.classifier import ClassificationReport

(continues on next page)

4.2. Model Secim Egitseli 21

yellowbrick Documentation, Siiriim 0.5

(onceki sayfadan devam)

def visual_model_selection (X, y, estimator):

mmn

Test various estimators.

mrmamn

y = LabelEncoder () .fit_transform(y.values.ravel())

model = Pipeline ([
("label_encoding', EncodeCategorical (X.keys())),
('one_hot_encoder', OneHotEncoder()),
('estimator', estimator)

1)

Instantiate the classification model and visualizer

visualizer = ClassificationReport (model, classes=['edible', 'poisonous'])
visualizer.fit (X, vy)

visualizer.score (X, vy)

visualizer.poof ()

visual_model_selection (X, y, LinearSVC())

Classes

LinearSVC Classification Report

edible

poisonous

& e

Measures

visual_model_selection (X, y, NuSVC())

22

Béliim 4. igindekiler Tablosu

yellowbrick Documentation, Siiriim 0.5

edible

Classes

poisonous

&

MuSVC Classification Report

o

&

Measures

visual_model_selection (X, vy,

sve())

4.2. Model Secim Egitseli

23

yellowbrick Documentation, Siiriim 0.5

SVC Classification Report

edible

Classes

poisonous

& < & '

Measures

visual_model_selection (X, y, SGDClassifier())

24 Béliim 4. igindekiler Tablosu

yellowbrick Documentation, Siiriim 0.5

SGDClassifier Classification Report

edible

Classes

poisonous

&

o

&

Measures

visual_model_selection (X, vy,

KNeighborsClassifier())

4.2. Model Secim Egitseli

25

yellowbrick Documentation, Siiriim 0.5

KNeighborsClassifier Classification Report

edible

Classes

poisonous

& < & '

Measures

visual_model_selection (X, y, LogisticRegressionCV())

26 Béliim 4. igindekiler Tablosu

yellowbrick Documentation, Siiriim 0.5

edible

Classes

poisonous

&

o

&

Measures

LogisticRegressionCV Classification Report

visual_model_selection (X, vy,

LogisticRegression())

4.2. Model Secim Egitseli

27

yellowbrick Documentation, Siiriim 0.5

LogisticRegression Classification Report

edible

Classes

poisonous

& < & '

Measures

visual_model_selection (X, y, BaggingClassifier())

28 Béliim 4. igindekiler Tablosu

yellowbrick Documentation, Siiriim 0.5

edible

Classes

poisonous

&

BaggingClassifier Classification Report

o

&

Measures

visual_model_selection (X, vy,

ExtraTreesClassifier())

4.2. Model Secim Egitseli

29

yellowbrick Documentation, Siiriim 0.5

ExtraTreesClassifier Classification Report

edible

Classes

poisonous

& < & '

Measures

visual_model_selection (X, y, RandomForestClassifier())

30 Béliim 4. igindekiler Tablosu

yellowbrick Documentation, Siiriim 0.5

RandomForestClassifier Classification Report

edible

Classes

poisonous

ﬁ*‘ & r

Measures

4.2.6 Degerlendirme

1. Hangi model en iyi goziikmektedir? Nigin?
2. Hangisi biiyiik ihtimalle hayatinizi kurtaracaktir?

3. Gorsel model degerlendirme deneyiminin, sayisal model degerlendirmesinden farki nedir?

4.3 Gorsellestiriciler ve API

Welcome the API documentation for Yellowbrick! This section contains a complete listing of all currently available,
production-ready visualizers along with code examples of how to use them. Use the links below to navigate to the
reference for each visualization.

4.3.1 Ornek Veri Setleri

Yellowbrick hosts several datasets wrangled from the UCI Machine Learning Repository to present the examples in
this section. If you haven’t downloaded the data, you can do so by running:

$ python -m yellowbrick.download

This should create a folder called data in your current working directory with all of the datasets. You can load a
specified dataset with pandas . read_csv as follows:

4.3. Gorsellestiriciler ve API 31

http://archive.ics.uci.edu/ml/

yellowbrick Documentation, Siiriim 0.5

import pandas as pd

data = pd.read_csv('data/concrete/concrete.csv')

The following code snippet can be found at the top of the examples/examples. ipynb notebok in Yellowbrick.
Please reference this code when trying to load a specific data set:

from yellowbrick.download import download_all

The path to the test data sets
FIXTURES = os.path.join(os.getcwd(), "data")

Dataset loading mechanisms

datasets = {
"bikeshare": os.path.Jjoin (FIXTURES, "bikeshare", "bikeshare.csv"),
"concrete": os.path.join (FIXTURES, "concrete", "concrete.csv"),
"credit": os.path.join (FIXTURES, "credit", "credit.csv"),
"energy": os.path.join (FIXTURES, "energy", "energy.csv"),
"game": os.path.join (FIXTURES, "game", "game.csv"),
"mushroom": os.path.join(FIXTURES, "mushroom", "mushroom.csv"),
"occupancy": os.path.Jjoin (FIXTURES, "occupancy", "occupancy.csv"),

def load_data (name, download=True) :
Loads and wrangles the passed in dataset by name.
If download is specified, this method will download any missing files.

mmn

Get the path from the datasets
path = datasets|[name]

Check 1if the data exists, otherwise download or raise
if not os.path.exists (path):
if download:
download_all ()
else:
raise ValueError ((
"' {}' dataset has not been downloaded, "
"use the download.py module to fetch datasets"
) . format (name))

Return the data frame
return pd.read_csv (path)

Note that most of the examples currently use one or more of the listed datasets for their examples (unless specifically
shown otherwise). Each dataset has a README . md with detailed information about the data source, attributes, and
target. Here is a complete listing of all datasets in Yellowbrick and their associated analytical tasks:

* bikeshare: suitable for regression
 concrete: suitable for regression

* credit: suitable for classification/clustering
* energy: suitable for regression

* game: suitable for classification

32 Bolim 4. icindekiler Tablosu

yellowbrick Documentation, Siiriim 0.5

* hobbies: suitable for text analysis
* mushroom: suitable for classification/clustering

* occupancy: suitable for classification

4.3.2 Anscombe Dortliisu

Yellowbrick has learned Anscombe’s lesson - which is why we believe that visual diagnostics are vital to machine
learning.

import yellowbrick as yb
import matplotlib.pyplot as plt

g = yb.anscombe ()
plt.show ()

15.0
12.5
10.0
7.5
50

25
0.0

15.0
125 ®
10.0

75 . e
50

25

0.0
0.0 25 5.0 75 100 125 150 0.0 25 50 75 100 125 150

API Referansi

Plots Anscombe’s Quartet as an illustration of the importance of visualization.

yellowbrick.anscombe.anscombe ()
Creates 2x2 grid plot of the 4 anscombe datasets for illustration.

4.3. Gorsellestiriciler ve API 33

yellowbrick Documentation, Siiriim 0.5

4.3.3 Feature Analysis Visualizers

Feature analysis visualizers are designed to visualize instances in data space in order to detect features or targets
that might impact downstream fitting. Because ML operates on high-dimensional data sets (usually at least 35), the
visualizers focus on aggregation, optimization, and other techniques to give overviews of the data. It is our intent that
the steering process will allow the data scientist to zoom and filter and explore the relationships between their instances
and between dimensions.

At the moment we have five feature analysis visualizers implemented:
* Rank Features: rank single and pairs of features to detect covariance

* RadViz Visualizer: plot data points along axes ordered around a circle to detect separability

Farallel Coordinates: plot instances as lines along vertical axes to detect classes or clusters
* PCA Projection: project higher dimensions into a visual space using PCA

* Feature Importances: rank features by relative importance in a model

* Direct Data Visualization: plot instances by selecting subsets of features

Feature analysis visualizers implement the Transformer API from Scikit-Learn, meaning they can be used as
intermediate transform steps in a Pipeline (particularly a VisualPipeline). They are instantiated in the same
way, and then fit and transform are called on them, which draws the instances correctly. Finally poof or show is
called which displays the image.

Feature Analysis Imports

NOTE that all these are available for import directly from the “yellowbrick.
—features module

from yellowbrick.features.rankd import RanklD, Rank2D

from yellowbrick.features.radviz import RadvViz

from yellowbrick.features.pcoords import ParallelCoordinates

from yellowbrick.features. jointplot import JointPlotVisualizer

from yellowbrick.features.pca import PCADecomposition

from yellowbrick.features.importances import FeatureImportances

from yellowbrick.features.scatter import ScatterVisualizer

RadViz Visualizer

RadViz is a multivariate data visualization algorithm that plots each feature dimension uniformly around the circumfe-
rence of a circle then plots points on the interior of the circle such that the point normalizes its values on the axes from
the center to each arc. This mechanism allows as many dimensions as will easily fit on a circle, greatly expanding the
dimensionality of the visualization.

Data scientists use this method to detect separability between classes. E.g. is there an opportunity to learn from the
feature set or is there just too much noise?

If your data contains rows with missing values (numpy.nan), those missing values will not be plotted. In other words,
you may not get the entire picture of your data. RadViz will raise a DataWarning to inform you of the percent missing.

If you do receive this warning, you may want to look at imputation strategies. A good starting place is scikit-learn
Imputer.

Load the classification data set
data = load_data('occupancy')

Specify the features of interest and the classes of the target
features = ["temperature", "relative humidity", "light", "CO02", "humidity"]

(continues on next page)

34 Bolim 4. icindekiler Tablosu

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Imputer.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Imputer.html

yellowbrick Documentation, Surim 0.5

(onceki sayfadan devam)

classes = ['unoccupied', 'occupied']

Extract the numpy arrays from the data frame
= data[features].as_matrix ()
y = data.occupancy.as_matrix ()

>

Import the visualizer
from yellowbrick.features import RadViz

Instantiate the visualizer
visualizer = RadViz (classes=classes, features=features)

visualizer.fit (X, vy) # Fit the data to the visualizer
visualizer.transform(X) # Transform the data
visualizer.poof () # Draw/show/poof the data

RadViz for 5 Features

.relative humidity ® unoccupied

occupied
light
g ®

-»
temperature
(]

®
coz

®
humidity

For regression, the RadViz visualizer should use a color sequence to display the target information, as opposed to
discrete colors.

API Reference

Implements radviz for feature analysis.

class yellowbrick.features.radviz.RadialVisualizer (ax=None, features=None, clas-
ses=None, color=None, color-
map=None, **kwargs)

4.3. Gorsellestiriciler ve API 35

yellowbrick Documentation, Siiriim 0.5

Bases: yellowbrick.features.base.DataVisualizer

RadViz is a multivariate data visualization algorithm that plots each axis uniformely around the circumference
of a circle then plots points on the interior of the circle such that the point normalizes its values on the axes from
the center to each arc.

Parameters

ax [matplotlib Axes, default: None] The axis to plot the figure on. If None is passed in the
current axes will be used (or generated if required).

features [list, default: None] a list of feature names to use If a DataFrame is passed to fit and
features is None, feature names are selected as the columns of the DataFrame.

classes [list, default: None] a list of class names for the legend If classes is None and a y value
is passed to fit then the classes are selected from the target vector.

color [list or tuple, default: None] optional list or tuple of colors to colorize lines Use either
color to colorize the lines on a per class basis or colormap to color them on a continuous
scale.

colormap [string or cmap, default: None] optional string or matplotlib cmap to colorize lines
Use either color to colorize the lines on a per class basis or colormap to color them on a
continuous scale.

kwargs [dict] Keyword arguments that are passed to the base class and may influence the visu-
alization as defined in other Visualizers.

Notes

These parameters can be influenced later on in the visualization process, but can and should be set as early as
possible.

Examples

>>> visualizer = RadViz ()
>>> visualizer.fit (X, y)
>>> visualizer.transform(X)
>>> visualizer.poof ()

draw (X, y, **kwargs)
Called from the fit method, this method creates the radviz canvas and draws each instance as a class or
target colored point, whose location is determined by the feature data set.

finalize (**kwargs)
Finalize executes any subclass-specific axes finalization steps. The user calls poof and poof calls finalize.

Parameters
kwargs: generic keyword arguments.

static normalize (X)
MinMax normalization to fit a matrix in the space [0,1] by column.

yellowbrick.features.radviz.RadViz
sunun takma adi: yellowbrick. features.radviz.RadialVisualizer

36 Bolim 4. icindekiler Tablosu

yellowbrick Documentation, Siiriim 0.5

Rank Features

Rank1D and Rank2D evaluate single features or pairs of features using a variety of metrics that score the features on
the scale [-1, 1] or [0, 1] allowing them to be ranked. A similar concept to SPLOMs, the scores are visualized on a
lower-left triangle heatmap so that patterns between pairs of features can be easily discerned for downstream analysis.

In this example, we’ll use the credit default data set from the UCI Machine Learning repository to rank features. The
code below creates our instance matrix and target vector.

Load the dataset
data = load_data('credit')

Specify the features of interest

features = [
'limit', 'sex', 'edu', 'married', 'age', 'apr_delay', 'may_delay',
'Jjun_delay', 'jul_delay', 'aug_delay', 'sep_delay', 'apr_bill', 'may_bill",
'Jun_bill', 'jul_bill', 'aug_bill', 'sep_bill', 'apr_pay', 'may_pay', 'Jjun_pay
— 7

'jul_pay', 'aug_pay', 'sep_pay',

Extract the numpy arrays from the data frame

X = datal[features].as_matrix|()
y = data.default.as_matrix()
Rank 1D

A one dimensional ranking of features utilizes a ranking algorithm that takes into account only a single feature at a time
(e.g. histogram analysis). By default we utilize the Shapiro-Wilk algorithm to assess the normality of the distribution
of instances with respect to the feature. A barplot is then drawn showing the relative ranks of each feature.

Instantiate the 1D visualizer with the Sharpiro ranking algorithm
visualizer = RanklD (features=features, algorithm='shapiro')

visualizer.fit (X, vy) # Fit the data to the visualizer
visualizer.transform (X) # Transform the data
visualizer.poof () # Draw/show/poof the data

4.3. Gorsellestiriciler ve API 37

yellowbrick Documentation, Siiriim 0.5

iimit Shapiro Ranking of 23 Features

sex

edu
married
age
apr_delay
may_delay
jun_delay
Jul_delay
aug_delay
sep_delay
apr_bill
may_hill
jun_bill
jul_bill
aug_bill
sep_bill
apr_pay
may_pay
Jun_pay
Jul_pay
aug_pay
sep_pay

0. 0.2 0.4 06 08 1.0

=1

Rank 2D

A two dimensional ranking of features utilizes a ranking algorithm that takes into account pairs of features at a time
(e.g. joint plot analysis). The pairs of features are then ranked by score and visualized using the lower left triangle of
a feature co-occurence matrix.

The default ranking algorithm is covariance, which attempts to compute the mean value of the product of deviations of
variates from their respective means. Covariance loosely attempts to detect a colinear relationship between features.

Instantiate the visualizer with the Covariance ranking algorithm

visualizer = Rank2D (features=features, algorithm='covariance')
visualizer.fit (X, v) # Fit the data to the visualizer
visualizer.transform(X) # Transform the data
visualizer.poof () # Draw/show/poof the data

38 Bolim 4. icindekiler Tablosu

yellowbrick Documentation, Siiriim 0.5

Covariance Ranking of 23 Features

married
age
apr_delay
may_delay
jun_delay
jul_delay
aug_delay
sep_delay
apr_bill
may_bill
jun_bill
jul_bill
aug_bill
sep_bill
apr_pay
may_pay
jun_pay
jul_pay
aug_pay
sep_pay

0.4

0.2

0.0

-0.6

-0.8

-1.0

¥y
¥
¥
¥y

apr_bill

BEER

E

narried

jul_bill
ug_bill
pr_pay
ay_pay
un_pay
jul_pay
Jg_pay
2p_pay

- delay
r dela
1 _dela
jun_bill
sep_bill

| dela

|:delay
) dela

way_hill

Alternatively we can utilize a linear correlation algorithm such as a Pearson score to similarly detect colinear relati-
onships. Compare the output from Pearson below to the covariance ranking above.

Instantiate the visualizer with the Pearson ranking algorithm
visualizer = Rank2D (features=features, algorithm='pearson')

visualizer.fit (X, vy) # Fit the data to the visualizer
visualizer.transform(X) # Transform the data
visualizer.poof () # Draw/show/poof the data

4.3. Gorsellestiriciler ve API 39

yellowbrick Documentation, Siiriim 0.5

Pearson Ranking of 23 Features
limit
sex
edu 08
married
age 06
apr_delay
may_delay
jun_delay
jul_delay
aug_delay 0.2
sep_delay
apr_bill 0.0
may_bill
jun_bill 02
jul_bill
aug_bill
sep_bill
apr_pay
may_pay -0.6
jun_pay
jul_pay 08
aug_pay
sep_pay

0.4

-1.0

¥y
¥
Y
¥y

apr_bill
jul_bill

| _dela
ug_bill

jun_bill

limit
sex
edu
narried
age
delay

'+ dela
1 dela
|_delay
) dela
pr_pay
ay_pay
un_pay
jul_pay
Jg_pay
2p_pay

way_hill
sep_bill

API Reference

Implements 1D (histograms) and 2D (joint plot) feature rankings.

class yellowbrick.features.rankd.RanklD (ax=None, algorithm="shapiro’, features=None,

orient="h’, show_feature_names=True,

**kwargs)
Bases: yellowbrick.features.rankd.RankDBase

Rank1D computes a score for each feature in the data set with a specific metric or algorithm (e.g. Shapiro-Wilk)
then returns the features ranked as a bar plot.

Parameters

ax [matplotlib Axes, default: None] The axis to plot the figure on. If None is passed in the
current axes will be used (or generated if required).

algorithm [one of {‘shapiro’, }, default: ‘shapiro’] The ranking algorithm to use, default is
‘Shapiro-Wilk.

features [list] A list of feature names to use. If a DataFrame is passed to fit and features is None,
feature names are selected as the columns of the DataFrame.

orient [‘h’ or ‘v’] Specifies a horizontal or vertical bar chart.

show_feature_names [boolean, default: True] If True, the feature names are used to label the
x and y ticks in the plot.

kwargs [dict] Keyword arguments that are passed to the base class and may influence the visu-
alization as defined in other Visualizers.

40 Bolim 4. icindekiler Tablosu

yellowbrick Documentation, Siiriim 0.5

Examples

>>> visualizer = Rank1D ()
>>> visualizer.fit (X, vy)
>>> visualizer.transform(X)
>>> visualizer.poof ()

Attributes
ranks_ [ndarray] An array of rank scores with shape (n,), where n is the number of features. It
is computed during fiz.
draw (**kwargs)
Draws the bar plot of the ranking array of features.
ranking methods = {'shapiro': <function RanklD.<lambda> at 0x7£8f2c89ble0>}

class yellowbrick.features.rankd.Rank2D (ax=None, algorithm="pearson’, features=None,
colormap="RdBu_r’, show_feature_names=True,
**kwargs)
Bases: yellowbrick.features.rankd.RankDBase

Rank2D performs pairwise comparisons of each feature in the data set with a specific metric or algorithm (e.g.
Pearson correlation) then returns them ranked as a lower left triangle diagram.

Parameters

ax [matplotlib Axes, default: None] The axis to plot the figure on. If None is passed in the
current axes will be used (or generated if required).

algorithm [one of { ‘pearson’, ‘covariance’}, default: ‘pearson’] The ranking algorithm to use,
default is Pearson correlation.

features [list] A list of feature names to use. If a DataFrame is passed to fit and features is None,
feature names are selected as the columns of the DataFrame.

colormap [string or cmap, default: ‘RdBu_r’] optional string or matplotlib cmap to colorize
lines Use either color to colorize the lines on a per class basis or colormap to color them on
a continuous scale.

show_feature_names [boolean, default: True] If True, the feature names are used to label the
axis ticks in the plot.

kwargs [dict] Keyword arguments that are passed to the base class and may influence the visu-
alization as defined in other Visualizers.

Notes

These parameters can be influenced later on in the visualization process, but can and should be set as early as
possible.

Examples

>>> visualizer = Rank2D ()
>>> visualizer.fit (X, vy)
>>> visualizer.transform(X)
>>> visualizer.poof ()

4.3. Gorsellestiriciler ve API 41

yellowbrick Documentation, Siiriim 0.5

Attributes
ranks_ [ndarray] An array of rank scores with shape (n,n), where n is the number of features.

It is computed during fit.

draw (**kwargs)
Draws the heatmap of the ranking matrix of variables.

ranking_methods = {'covariance': <function Rank2D.<lambda> at 0x7£8£2c89b400>,

Parallel Coordinates

Parallel coordinates displays each feature as a vertical axis spaced evenly along the horizontal, and each instance as a
line drawn between each individual axis. This allows many dimensions; in fact given infinite horizontal space (e.g. a
scrollbar), an infinite number of dimensions can be displayed!

Data scientists use this method to detect clusters of instances that have similar classes, and to note features that have
high variance or different distributions.

Load the classification data set
data = load_data ('occupancy')

Specify the features of interest and the classes of the target
features = ["temperature", "relative humidity", "light", "CO02", "humidity"]
classes = ['unoccupied', 'occupied']

Extract the numpy arrays from the data frame
X = data[features].as_matrix()
y = data.occupancy.as_matrix()

Instantiate the visualizer
visualizer = ParallelCoordinates(classes=classes, features=features)

visualizer.fit (X, y) # Fit the data to the visualizer
visualizer.transform(X) # Transform the data
visualizer.poof () # Draw/show/poof the data

42 Bolim 4. icindekiler Tablosu

'pearso

yellowbrick Documentation, Surim 0.5

Parallel Coordinates for 5 Features

occupied
2000 unoccupied

1500

1000

500

0

temperature relative humidity light coz humidity

Parallel coordinates can take a long time to draw since each instance is represented by a line for each feature. Worse,
this time is not well spent since a lot of overlap in the visualization makes the parallel coordinates less understandable.
To fix this, pass the sample keyword argument to the visualizer with a percentage to randomly sample from the
dataset.

Additionally the domain of each feature may make the visualization hard to interpret. In the above visualization, the
domain of the 1ight feature is from in [0, 1600], far larger than the range of temperature in [50, 96]. A
normalization methodology can be applied to change the range of features to [0, 1]. Try using minmax, minabs,
standard, 11, or 12 normalization to change perspectives in the parallel coordinates:

Instantiate the visualizer

visualizer = ParallelCoordinates(
classes=classes, features=features,
normalize="'standard', sample=0.1,

visualizer.fit (X, y) # Fit the data to the visualizer
visualizer.transform(X) # Transform the data
visualizer.poof () # Draw/show/poof the data

4.3. Gorsellestiriciler ve API 43

yellowbrick Documentation, Siiriim 0.5

Parallel Coordinates for 5 Features

occupied
unoccupied

temperature relative humidity light coz humidity

API Reference

Implementations of parallel coordinates for multi-dimensional feature analysis. There are a variety of parallel coordi-
nates from Andrews Curves to coordinates that optimize column order.

class yellowbrick.features.pcoords.ParallelCoordinates (ax=None, features=None,

classes=None, norma-
lize=None, sample=1.0,
color=None, color-

map=None, vilines=True,
vlines_kwds=None,

**kwargs)
Bases: yellowbrick.features.base.DataVisualizer

Parallel coordinates displays each feature as a vertical axis spaced evenly along the horizontal, and each instance
as a line drawn between each individual axis.

Parameters

ax [matplotlib Axes, default: None] The axis to plot the figure on. If None is passed in the
current axes will be used (or generated if required).

features [list, default: None] a list of feature names to use If a DataFrame is passed to fit and
features is None, feature names are selected as the columns of the DataFrame.

classes [list, default: None] a list of class names for the legend If classes is None and a y value
is passed to fit then the classes are selected from the target vector.

44 Bolim 4. icindekiler Tablosu

yellowbrick Documentation, Siiriim 0.5

normalize [string or None, default: None] specifies which normalization method to use, if any
Current supported options are ‘minmax’, ‘maxabs’, ‘standard’, ‘11°, and ‘12’.

sample [float or int, default: 1.0] specifies how many examples to display from the data If int,
specifies the maximum number of samples to display. If float, specifies a fraction between O
and 1 to display.

color [list or tuple, default: None] optional list or tuple of colors to colorize lines Use either
color to colorize the lines on a per class basis or colormap to color them on a continuous
scale.

colormap [string or cmap, default: None] optional string or matplotlib cmap to colorize lines
Use either color to colorize the lines on a per class basis or colormap to color them on a
continuous scale.

vlines [boolean, default: True] flag to determine vertical line display
vlines_kwds [dict, default: None] options to style or display the vertical lines, default: None

kwargs [dict] Keyword arguments that are passed to the base class and may influence the visu-
alization as defined in other Visualizers.

Notes

These parameters can be influenced later on in the visualization process, but can and should be set as early as
possible.

Examples

>>> visualizer = ParallelCoordinates()
>>> visualizer.fit (X, y)

>>> visualizer.transform(X)

>>> visualizer.poof ()

draw (X, y, **kwargs)
Called from the fit method, this method creates the parallel coordinates canvas and draws each instance
and vertical lines on it.

finalize (**kwargs)
Finalize executes any subclass-specific axes finalization steps. The user calls poof and poof calls finalize.

Parameters
kwargs: generic keyword arguments.

normalizers = {'ll': Normalizer (copy=True, norm='11'), 'l2': Normalizer (copy=True, nor

PCA Projection

The PCA Decomposition visualizer utilizes principle component analysis to decompose high dimensional data into
two or three dimensions so that each instance can be plotted in a scatter plot. The use of PCA means that the projected
dataset can be analyzed along axes of principle variation and can be interpreted to determine if spherical distance
metrics can be utilized.

4.3. Gorsellestiriciler ve API 45

yellowbrick Documentation, Siiriim 0.5

Load the classification data set
data = load_data('credit')

Specify the features of interest

features = |
'limit', 'sex', 'edu', 'married', 'age', 'apr_delay', 'may_delay',
'jun_delay', 'jul_delay', 'aug_delay', 'sep_delay', 'apr_bill', 'may_bill',
'jun_bill', 'jul_bill', 'aug_bill', 'sep_bill', 'apr_pay', 'may_pay', 'jun_pay',
'Jul_pay', 'aug_pay', 'sep_pay',

Extract the numpy arrays from the data frame
data[features] .as_matrix ()
y = data.default.as_matrix()

=
Il

visualizer = PCADecomposition (scale=True, center=False, col=y)
visualizer.fit_transform(X,y)
visualizer.poof ()

Principal Component Plot

°

30

. °

o 0
5 *,
=
(=]
(=R
E
S 10
T
(=
S ®
£
@

0

-10

5 0 5 10 15 20 25 30

Principal Component 1

The PCA projection can also be plotted in three dimensions to attempt to visualize more princple components and get
a better sense of the distribution in high dimensions.

visualizer = PCADecomposition(scale=True, center=False, col=y, proj_dim=3)
visualizer.fit_transform(X,y)
visualizer.poof ()

46 Bolim 4. icindekiler Tablosu

yellowbrick Documentation, Siiriim 0.5

Principal Component Plot

)
5 88 35 g
ncipal Component 3

B
&
/
L]
Pri

< 30.1‘

API Reference

Decomposition based feature visualization with PCA.
scale=True, color=None,

class yellowbrick.features.pca.PCADecomposition (ax=None,
colormap="RdBu’,

proj_dim=2,
**kwargs)

Bases: yellowbrick.features.base.FeatureVisualizer

Produce a two or three dimensional principal component plot of the data array X projected onto it’s largest sequ-
ential principal components. It is common practice to scale the data array X before applying a PC decomposition.

Variable scaling can be controlled using the scale argument.

Parameters
X [ndarray or DataFrame of shape n x m] A matrix of n instances with m features.

y [ndarray or Series of length n] An array or series of target or class values.

ax [matplotlib Axes, default: None] The axes to plot the figure on. If None is passed in the
current axes. will be used (or generated if required).

scale [bool, default: True] Boolean that indicates if user wants to scale data.
proj_dim [int, default: 2] Dimension of the PCA visualizer.
color [list or tuple of colors, default: None] Specify the colors for each individual class.

colormap [string or cmap, default: None] Optional string or matplotlib cmap to colorize lines.
Use either color to colorize the lines on a per class basis or colormap to color them on a

47

4.3. Gorsellestiriciler ve API

yellowbrick Documentation, Siiriim 0.5

continuous scale.

kwargs [dict] Keyword arguments that are passed to the base class and may influence the visu-
alization as defined in other Visualizers.

Examples

>>> from sklearn import datasets

>>> iris = datasets.load_iris()

>>> X = iris.data

>>> y = iris.target

>>> params = {'scale': True, 'center': False, 'col': y}
>>> visualizer = PCADecomposition (xxparams)

>>> visualizer.fit (X)
>>> visualizer.transform(X)
>>> visualizer.poof ()

draw (**kwargs)
The fitting or transformation process usually calls draw (not the user). This function is implemented for
developers to hook into the matplotlib interface and to create an internal representation of the data the
visualizer was trained on in the form of a figure or axes.

Parameters
kwargs: dict generic keyword arguments.

finalize (**kwargs)
Finalize executes any subclass-specific axes finalization steps.

Parameters

kwargs: dict generic keyword arguments.

Notes

The user calls poof and poof calls finalize. Developers should implement visualizer-specific finalization
methods like setting titles or axes labels, etc.

fit (X, y=None, **kwargs)
Fits a visualizer to data and is the primary entry point for producing a visualization. Visualizers are Scikit-
Learn Estimator objects, which learn from data in order to produce a visual analysis or diagnostic. They can
do this either by fitting features related data or by fitting an underlying model (or models) and visualizing
their results.

Parameters
X [ndarray or DataFrame of shape n x m] A matrix of n instances with m features
y [ndarray or Series of length n] An array or series of target or class values

kwargs: dict Keyword arguments passed to the drawing functionality or to the Scikit-Learn
API. See visualizer specific details for how to use the kwargs to modify the visualization
or fitting process.

Returns

self [visualizer] The fit method must always return self to support pipelines.

48 Bolim 4. icindekiler Tablosu

yellowbrick Documentation, Siiriim 0.5

transform (X, y=None, **kwargs)
Primarily a pass-through to ensure that the feature visualizer will work in a pipeline setting. This method
can also call drawing methods in order to ensure that the visualization is constructed.

This method must return a numpy array with the same shape as X.

Feature Importances

The feature engineering process involves selecting the minimum required features to produce a valid model because the
more features a model contains, the more complex it is (and the more sparse the data), therefore the more sensitive the
model is to errors due to variance. A common approach to eliminating features is to describe their relative importance
to a model, then eliminate weak features or combinations of features and re-evalute to see if the model fairs better
during cross-validation.

Many model forms describe the underlying impact of features relative to each other. In Scikit-Learn, Deci-
sion Tree models and ensembles of trees such as Random Forest, Gradient Boosting, and Ada Boost provide a
feature_importances_ attribute when fitted. The Yellowbrick FeatureImportances visualizer utilizes
this attribute to rank and plot relative importances. Let’s start with an example; first load a classification dataset as
follows:

Load the classification data set
data = load_data('occupancy')

Specify the features of interest
features = |
"temperature", "relative humidity", "light", "CO02", "humidity"

Extract the instances and target
X data[features]
y = data.occupancy

Once the dataset has been loaded, we can create a new figure (this is optional, if an Axes isn’t specified, Yel-
lowbrick will use the current figure or create one). We can then fit a FeatureImportances visualizer with a
GradientBoostingClassifier to visualize the ranked features:

from sklearn.ensemble import GradientBoostingClassifier
from yellowbrick.features import FeatureImportances

Create a new matplotlib figure
fig = plt.figure()
ax = fig.add_subplot ()

viz = Featurelmportances (GradientBoostingClassifier (), ax=ax)
viz.fit (X, y)
viz.poof ()

4.3. Gorsellestiriciler ve API 49

yellowbrick Documentation, Siiriim 0.5

Feature Importances of 5 Features using GradientBoostingClassifier

light

relative humidity -

humidity

(=]

20 40 60 80 100
relative importance

The above figure shows the features ranked according to the explained variance each feature contributes to the model.
In this case the features are plotted against their relative importance, that is the percent importance of the most impor-
tant feature. The visualizer also contains features_ and feature_importances_ attributes to get the ranked
numeric values.

For models that do not supporta feature_importances_ attribute, the FeatureImportances visualizer will
also draw a bar plot for the coef__ attribute that many linear models provide. First we start by loading a regression
dataset:

Load a regression data set
data = load_data("concrete™)

Specify the features of interest
features = [
'cement', 'slag', 'ash', 'water', 'splast', 'coarse', 'fine', 'age'

Extract the instances and target
X = concrete[feats]
y concrete.strength

When using a model with a coef__ attribute, it is better to set relat ive=False to draw the true magnitude of the
coefficient (which may be negative). We can also specify our own set of labels if the dataset does not have column
names or to print better titles. In the example below we title case our features for better readability:

Create a new figure
fig = plt.figure ()
ax = fig.add_subplot ()

(continues on next page)

50 Bolim 4. icindekiler Tablosu

yellowbrick Documentation, Surim 0.5

(onceki sayfadan devam)

Title case the feature for better display and create the visualizer
labels = list (map(lambda s: s.title(), features))
viz = FeaturelImportances (Lasso (), ax=ax, labels=labels, relative=False)

Fit and show the feature importances
viz.fit (X, vy)
viz.poof ()

Feature Importances of 8 Features using Lasso

Splast
Cement
Age
Slag
Ash
Fine

Coarse

-0.15 -0.10 -0.05 0.00 0.05 0.10 015 0.20
coefficient value

Not: The interpretation of the importance of coeficients depends on the model; see the discussion below for more
details.

Discussion

Generalized linear models compute a predicted independent variable via the linear combination of an array of coef-
ficients with an array of dependent variables. GLMs are fit by modifying the coefficients so as to minimize error and
regularization techniques specify how the model modifies coefficients in relation to each other. As a result, an oppor-
tunity presents itself: larger coefficients are necessarily “more informative” because they contribute a greater weight
to the final prediction in most cases.

Additionally we may say that instance features may also be more or less “informative” depending on the product of
the instance feature value with the feature coefficient. This creates two possibilities:

1. We can compare models based on ranking of coefficients, such that a higher coefficient is “more informative”.

4.3. Gorsellestiriciler ve API 51

yellowbrick Documentation, Siiriim 0.5

2. We can compare instances based on ranking of feature/coefficient products such that a higher product is “more
informative”.

In both cases, because the coefficient may be negative (indicating a strong negative correlation) we must rank features
by the absolute values of their coefficients. Visualizing a model or multiple models by most informative feature is
usually done via bar chart where the y-axis is the feature names and the x-axis is numeric value of the coefficient such
that the x-axis has both a positive and negative quadrant. The bigger the size of the bar, the more informative that
feature is.

This method may also be used for instances; but generally there are very many instances relative to the number models
being compared. Instead a heatmap grid is a better choice to inspect the influence of features on individual instances.
Here the grid is constructed such that the x-axis represents individual features, and the y-axis represents individual
instances. The color of each cell (an instance, feature pair) represents the magnitude of the product of the instance
value with the feature’s coefficient for a single model. Visual inspection of this diagnostic may reveal a set of instances
for which one feature is more predictive than another; or other types of regions of information in the model itself.

API Reference

Implementation of a feature importances visualizer. This visualizer sits in kind of a weird place since it is technically
a model scoring visualizer, but is generally used for feature engineering.

class yellowbrick.features.importances.FeatureImportances (model, ax=None,
labels=None, re-
lative=True, ab-
solute=False, xla-

bel=None, **kwargs)
Bases: yellowbrick.base.ModelVisualizer

Displays the most informative features in a model by showing a bar chart of features ranked by their importances.
Although primarily a feature engineering mechanism, this visualizer requires a model that has either a coef__
or feature_importances_ parameter after fit.

Parameters

model [Estimator] A Scikit-Learn estimator that learns feature importances. Must support either
coef_or feature_importances_ parameters.

ax [matplotlib Axes, default: None] The axis to plot the figure on. If None is passed in the
current axes will be used (or generated if required).

labels [list, default: None] A list of feature names to use. If a DataFrame is passed to fit and
features is None, feature names are selected as the column names.

relative [bool, default: True] If true, the features are described by their relative importance as
a percentage of the strongest feature component; otherwise the raw numeric description of
the feature importance is shown.

absolute [bool, default: False] Make all coeficients absolute to more easily compare negative
coeficients with positive ones.

xlabel [str, default: None] The label for the X-axis. If None is automatically determined by the
underlying model and options provided.

kwargs [dict] Keyword arguments that are passed to the base class and may influence the visu-
alization as defined in other Visualizers.

52 Bolim 4. icindekiler Tablosu

yellowbrick Documentation, Siiriim 0.5

Examples

>>> from sklearn.ensemble import GradientBoostingClassifier

>>> visualizer = FeaturelImportances (GradientBoostingClassifier())
>>> visualizer.fit (X, y)

>>> visualizer.poof ()

Attributes
features_ [np.array] The feature labels ranked according to their importance
feature_importances_ [np.array] The numeric value of the feature importance computed by
the model
draw (**kwargs)
Draws the feature importances as a bar chart; called from fit.

finalize (**kwargs)
Finalize the drawing setting labels and title.

fit (X, y=None, **kwargs)
Fits the estimator to discover the feature importances described by the data, then draws those importances
as a bar plot.

Parameters
X [ndarray or DataFrame of shape n x m] A matrix of n instances with m features
y [ndarray or Series of length n] An array or series of target or class values
kwargs [dict] Keyword arguments passed to the fit method of the estimator.
Returns

self [visualizer] The fit method must always return self to support pipelines.
Direct Data Visualization
Sometimes for feature analysis you simply need a scatter plot to determine the distribution of data. Machine learning
operates on high dimensional data, so the number of dimensions has to be filtered. As a result these visualizations

are typically used as the base for larger visualizers; however you can also use them to quickly plot data during ML
analysis.

Scatter Visualization

A scatter visualizer simply plots two features against each other and colors the points according to the target. This can
be useful in assessing the relationship of pairs of features to an individual target.

Load the classification data set
data = load_data('occupancy')

Specify the features of interest and the classes of the target
features = ["temperature", "relative humidity", "light", "CO02", "humidity"]

classes = ['unoccupied', 'occupied']

Extract the numpy arrays from the data frame

(continues on next page)

4.3. Gorsellestiriciler ve API 53

yellowbrick Documentation, Siiriim 0.5

(onceki sayfadan devam)

<
Il

data[features]
data.occupancy

b
Il

from yellowbrick.features import ScatterVisualizer
visualizer = ScatterVisualizer (x='light', y='C02', classes=classes)
visualizer.fit (X, vy)

visualizer.transform(X)
visualizer.poof ()

Scatter Plot: light vs C02

B unoccupied
occupied

2000
1750
1500
% 1250
1000

750

500

0 500 1000 1500 2000

Joint Plot Visualization

A joint plot visualizer plots a feature against the target and shows the distribution of each via a histogram on each axis.

Load the data

df = load_data('concrete')
feature = 'cement'

target = 'strength'

Get the X and y data from the DataFrame
X = df[feature]
y = df[target]

54 Bolim 4. icindekiler Tablosu

yellowbrick Documentation, Surim 0.5

visualizer =

JointPlotVisualizer (feature=feature,

target=target)
visualizer.fit (X, vy)
visualizer.poof ()

100 200

500
cement

The joint plot visualizer can also be plotted with hexbins in the case of many, many points.
visualizer = JointPlotVisualizer(
feature=feature,

)

target=target, joint_plot='hex'

visualizer.fit (X, vy)
visualizer.poof ()

4.3. Gorsellestiriciler ve API

55

yellowbrick Documentation, Siiriim 0.5

70

10

150 200 250 300 350 400 450 500
cement

API Reference

Implements a 2D scatter plot for feature analysis.

class yellowbrick.features.scatter.ScatterVisualizer (ax=None, x=None, y=None,

features=None, classes=None,
color=None, colormap=None,
markers=None, **kwargs)

Bases: yellowbrick.features.base.DataVisualizer

ScatterVisualizer is a bivariate feature data visualization algorithm that plots using the Cartesian coordinates of
each point.

Parameters
ax [a matplotlib plot, default: None]

The axis to plot the figure on.

56 Bolim 4. icindekiler Tablosu

yellowbrick Documentation, Siiriim 0.5

X [string, default: None] The feature name that corresponds to a column name or index
postion in the matrix that will be plotted against the x-axis

y [string, default: None] The feature name that corresponds to a column name or index
postion in the matrix that will be plotted against the y-axis

features [a list of two feature names to use, default: None] List of two features that cor-
respond to the columns in the array. The order of the two features correspond to X and
Y axes on the graph. More than two feature names or columns will raise an error. If a
DataFrame is passed to fit and features is None, feature names are selected that are the
columns of the DataFrame.

classes [a list of class names for the legend, default: None] If classes is None and a y value
is passed to fit then the classes are selected from the target vector.

color [optional list or tuple of colors to colorize points, default: None] Use either color to
colorize the points on a per class basis or colormap to color them on a continuous scale.

colormap [optional string or matplotlib cmap to colorize points, default: None] Use either
color to colorize the points on a per class basis or colormap to color them on a continuous
scale.

markers [iterable of strings, default: ,+o*vhd] Matplotlib style markers for points on the
scatter plot points
kwargs : keyword arguments passed to the super class.

These parameters can be influenced later on in the visualization process, but can and should
be set as early as possible.

draw (X, y, **kwargs)
Called from the fit method, this method creates a scatter plot that draws each instance as a class or target
colored point, whose location is determined by the feature data set.

finalize (**kwargs)
Finalize executes any subclass-specific axes finalization steps. The user calls poof and poof calls finalize.

Parameters
kwargs: generic keyword arguments.

fit (X, y=None, **kwargs)
The fit method is the primary drawing input for the parallel coords visualization since it has both the X
and y data required for the viz and the transform method does not.

Parameters
X [ndarray or DataFrame of shape n x m] A matrix of n instances with 2 features
y [ndarray or Series of length n] An array or series of target or class values
kwargs [dict] Pass generic arguments to the drawing method

Returns

self [instance] Returns the instance of the transformer/visualizer

4.3.

Gorsellestiriciler ve API 57

yellowbrick Documentation, Siiriim 0.5

class yellowbrick.features.jointplot.JointPlotVisualizer (ax=None, feature=None,

target=None, jo-
int_plot="scatter’,
Jjoint_args=None,
xy_plot="hist’,
xy_args=None,
size=600, ratio=5,
space=0.2, **kwargs)

Bases: yellowbrick.features.base.FeatureVisualizer

JointPlotVisualizer allows for a simultaneous visualization of the relationship between two variables and the
distrbution of each individual variable. The relationship is plotted along the joint axis and univariate distributions

are plotted on top of the x axis and to the right of the y axis.

Parameters

ax: matplotlib Axes, default: None This is inherited from FeatureVisualizer but is defined wit-
hin JointPlotVisualizer since there are three axes objects.

feature: string, default: None The name of the X variable If a DataFrame is passed to fit and
feature is None, feature is selected as the column of the DataFrame. There must be only one
column in the DataFrame.

target: string, default: None The name of the Y variable If target is None and a y value is
passed to fit then the target is selected from the target vector.

joint_plot: one of {‘scatter’, ‘hex’}, default: ‘scatter’ The type of plot to render in the joint
axis Currently, the choices are scatter and hex. Use scatter for small datasets and hex for
large datasets

joint_args: dict, default: None Keyword arguments used for customizing the joint plot:

Pro- | Description

perty

alpha | transparency

face- | background color of the joint axis

co-

lor

as- aspect ratio

pect

fit used if scatter is selected for joint_plot to draw a best fit line - values can be True
or False. Uses Yellowbrick.bestfit

esti- | used if scatter is selected for joint_plot to determine the type of best fit line to

ma- | use. Refer to Yellowbrick.bestfit for types of estimators that can be used.

tor

x_bing used if hex is selected to set the number of bins for the x value

y_bing used if hex is selected to set the number of bins for the y value

cmap | string or matplotlib cmap to colorize lines Use either color to colorize the lines
on a per class basis or colormap to color them on a continuous scale.

xy_plot: one of {‘hist’}, default: ‘hist’ The type of plot to render along the x and y axes Cur-
rently, the choice is hist

xy_args: dict, default: None Keyword arguments used for customizing the x and y plots:

58

Bolim 4. icindekiler Tablosu

yellowbrick Documentation, Siiriim 0.5

Property Description

alpha transparency

facecolor_x | background color of the x axis

facecolor_y | background color of the y axis

bins used to set up the number of bins for the hist plot
histcolor_x | used to set the color for the histogram on the x axis
histcolor_y | used to set the color for the histogram on the y axis

size: float, default: 600 Size of each side of the figure in pixels
ratio: float, default: 5 Ratio of joint axis size to the x and y axes height
space: float, default: 0.2 Space between the joint axis and the x and y axes

kwargs [dict] Keyword arguments that are passed to the base class and may influence the visu-
alization as defined in other Visualizers.

Notes

These parameters can be influenced later on in the visualization process, but can and should be set as early as
possible.

Examples

>>> visualizer = JointPlotVisualizer ()
>>> visualizer.fit (X,y)
>>> visualizer.poof ()

draw (X, y, **kwargs)
Sets up the layout for the joint plot draw calls draw_joint and draw_xy to render the visualizations.

draw_joint (X, y, **kwargs)
Draws the visualization for the joint axis.

draw_xy (X, y, **kwargs)
Draws the visualization for the x and y axes

finalize (**kwargs)
Finalize executes any subclass-specific axes finalization steps. The user calls poof and poof calls finalize.

Parameters
kwargs: generic keyword arguments.

fit (X, y, **kwargs)
Sets up the X and y variables for the jointplot and checks to ensure that X and y are of the correct data type

Fit calls draw
Parameters
X [ndarray or DataFrame of shape n x 1] A matrix of n instances with 1 feature
y [ndarray or Series of length n] An array or series of the target value

kwargs: dict keyword arguments passed to Scikit-Learn APIL.

4.3. Gorsellestiriciler ve API 59

yellowbrick Documentation, Siiriim 0.5

poof (**kwargs)
Creates the labels for the feature and target variables

4.3.4 Regression Visualizers

Regression models attempt to predict a target in a continuous space. Regressor score visualizers display the instances in
model space to better understand how the model is making predictions. We currently have implemented three regressor
evaluations:

* Residuals Plot: plot the difference between the expected and actual values
* Prediction Error Plot: plot the expected vs. actual values in model space
* Alpha Selection: visual tuning of regularization hyperparameters

Estimator score visualizers wrap Scikit-Learn estimators and expose the Estimator API such that they have fit (),
predict (), and score () methods that call the appropriate estimator methods under the hood. Score visualizers
can wrap an estimator and be passed in as the final stepina Pipeline or VisualPipeline.

Regression Evaluation Imports

from sklearn.linear _model import Ridge, Lasso
from sklearn.model_selection import train_test_split

from yellowbrick.regressor import PredictionError, ResidualsPlot
from yellowbrick.regressor.alphas import AlphaSelection

Residuals Plot

A residuals plot shows the residuals on the vertical axis and the independent variable on the horizontal axis. If the points
are randomly dispersed around the horizontal axis, a linear regression model is appropriate for the data; otherwise, a
non-linear model is more appropriate.

Load the data

df = load_data ('concrete')
feature_names = ['cement', 'slag', 'ash', 'water', 'splast', 'coarse', 'fine', 'age']
target_name = 'strength'

Get the X and y data from the DataFrame
X = df[feature_names].as_matrix()
y = df [target_name].as_matrix()

Create the train and test data
X_train, X_test, y_train, y_test = train_test_split (X, y, test_size=0.2)

Instantiate the linear model and visualizer
ridge = Ridge ()
visualizer = ResidualsPlot (ridge)

visualizer.fit (X_train, y_train) # Fit the training data to the visualizer
visualizer.score (X_test, y_test) # Evaluate the model on the test data
g = visualizer.poof () # Draw/show/poof the data

60 Bolim 4. icindekiler Tablosu

yellowbrick Documentation, Siiriim 0.5

Residuals for Ridge Model

30 Training Data -
Test Data

10

Residuals

-10

-20

10 20 30 40 50 60 70 80
Predicted Value

API Reference

Regressor visualizers that score residuals: prediction vs. actual data.

class yellowbrick.regressor.residuals.ResidualsPlot (model, ax=None, **kwargs)
Bases: yellowbrick.regressor.base.RegressionScoreVisualizer

A residual plot shows the residuals on the vertical axis and the independent variable on the horizontal axis.

If the points are randomly dispersed around the horizontal axis, a linear regression model is appropriate for the
data; otherwise, a non-linear model is more appropriate.

Parameters

model [a Scikit-Learn regressor] Should be an instance of a regressor, otherwise a will raise a
YellowbrickTypeError exception on instantiation.

ax [matplotlib Axes, default: None] The axes to plot the figure on. If None is passed in the
current axes will be used (or generated if required).

train_color [color, default: ‘b’] Residuals for training data are ploted with this color but also
given an opacity of 0.5 to ensure that the test data residuals are more visible. Can be any
matplotlib color.

test_color [color, default: ‘g’] Residuals for test data are plotted with this color. In order to
create generalizable models, reserved test data residuals are of the most analytical interest,
so these points are highlighted by hvaing full opacity. Can be any matplotlib color.

4.3. Gorsellestiriciler ve API 61

yellowbrick Documentation, Siiriim 0.5

line_color [color, default: dark grey] Defines the color of the zero error line, can be any matp-
lotlib color.

kwargs [dict] Keyword arguments that are passed to the base class and may influence the visu-
alization as defined in other Visualizers.

Notes

ResidualsPlot is a ScoreVisualizer, meaning that it wraps a model and its primary entry point is the score()
method.

Examples

>>> from yellowbrick.regressor import ResidualsPlot
>>> from sklearn.linear_model import Ridge

>>> model = ResidualsPlot (Ridge())

>>> model.fit (X_train, y_train)

>>> model.score (X_test, y_test)

>>> model .poof ()

draw (y_pred, residuals, train=False, **kwargs)
Parameters
y_pred [ndarray or Series of length n] An array or series of predicted target values

residuals [ndarray or Series of length n] An array or series of the difference between the
predicted and the target values

train [boolean] If False, draw assumes that the residual points being plotted are from the
test data; if True, draw assumes the residuals are the train data.

Returns
ax [the axis with the plotted figure]

finalize (**kwargs)
Finalize executes any subclass-specific axes finalization steps. The user calls poof and poof calls finalize.

Parameters
kwargs: generic keyword arguments.
fit (X, y=None, **kwargs)
Parameters
X [ndarray or DataFrame of shape n x m] A matrix of n instances with m features
y [ndarray or Series of length n] An array or series of target values
kwargs: keyword arguments passed to Scikit-Learn API.

score (X, y=None, train=False, **kwargs)
Generates predicted target values using the Scikit-Learn estimator.

Parameters

X [array-like] X (also X_test) are the dependent variables of test set to predict

62 Bolim 4. icindekiler Tablosu

yellowbrick Documentation, Siiriim 0.5

y [array-like] y (also y_test) is the independent actual variables to score against

train [boolean] If False, score assumes that the residual points being plotted are from the
test data; if True, score assumes the residuals are the train data.

Returns

ax [the axis with the plotted figure]

Prediction Error Plot

A prediction error plot shows the actual targets from the dataset against the predicted values generated by our model.
This allows us to see how much variance is in the model. Data scientists can diagnose regression models using this
plot by comparing against the 45 degree line, where the prediction exactly matches the model.

Load the data

df = load_data ('concrete')
feature_names = ['cement', 'slag', 'ash', 'water', 'splast', 'coarse', 'fine', 'age'l]
target_name = 'strength'

Get the X and y data from the DataFrame
X = df[feature_names].as_matrix/()
y = df[target_name].as_matrix ()

Create the train and test data
X_train, X_test, y_train, y_test = train_test_split (X, y, test_size=0.2)

Instantiate the linear model and visualizer
lasso = Lasso()
visualizer = PredictionError (lasso)

visualizer.fit (X_train, y_train) # Fit the training data to the visualizer
visualizer.score (X_test, y_test) # Evaluate the model on the test data
g = visualizer.poof () # Draw/show/poof the data

4.3. Gorsellestiriciler ve API 63

yellowbrick Documentation, Siiriim 0.5

Prediction Error for Lasso (r? = 0.638)

80 == bestfit 27
— — identity e
Re
70 () ,, ®
® .
* /. g
80 . ,/ .. .’,’.
° L4 i)

R

API Reference

Regressor visualizers that score residuals: prediction vs. actual data.

class yellowbrick.regressor.residuals.PredictionError (model, ax=None, sha-
red_limits=True, best-
fit=True, identity=True,

**kwargs)

Bases: yellowbrick.regressor.base.RegressionScoreVisualizer

The prediction error visualizer plots the actual targets from the dataset against the predicted values generated by
our model(s). This visualizer is used to dectect noise or heteroscedasticity along a range of the target domain.

Parameters

model [a Scikit-Learn regressor] Should be an instance of a regressor, otherwise a will raise a
Yellowbrick TypeError exception on instantiation.

ax [matplotlib Axes, default: None] The axes to plot the figure on. If None is passed in the
current axes will be used (or generated if required).

shared_limits [bool, default: True] If shared_limits is True, the range of the X and Y axis
limits will be identical, creating a square graphic with a true 45 degree line. In this form, it
is easier to diagnose under- or over- prediction, though the figure will become more sparse.
To localize points, set shared_limits to False, but note that this will distort the figure and
should be accounted for during analysis.

besfit [bool, default: True] Draw a linear best fit line to estimate the correlation between the pre-
dicted and measured value of the target variable. The color of the bestfit line is determined

64 Bolim 4. icindekiler Tablosu

yellowbrick Documentation, Siiriim 0.5

by the 1ine_color argument.

identity: bool, default: True Draw the 45 degree identity line, y=x in order to better show the
relationship or pattern of the residuals. E.g. to estimate if the model is over- or under- estima-
ting the given values. The color of the identity line is a muted version of the 1ine color
argument.

point_color [color] Defines the color of the error points; can be any matplotlib color.
line_color [color] Defines the color of the best fit line; can be any matplotlib color.

kwargs [dict] Keyword arguments that are passed to the base class and may influence the visu-
alization as defined in other Visualizers.

Notes

PredictionError is a ScoreVisualizer, meaning that it wraps a model and its primary entry point is the score()
method.

Examples

>>> from yellowbrick.regressor import PredictionError
>>> from sklearn.linear model import Lasso

>>> model = PredictionError (Lasso())

>>> model.fit (X_train, y_train)

>>> model.score (X_test, y_test)

>>> model .poof ()

draw (y, y_pred)
Parameters
y [ndarray or Series of length n] An array or series of target or class values
y_pred [ndarray or Series of length n] An array or series of predicted target values
Returns
ax [the axis with the plotted figure]

finalize (**kwargs)
Finalize executes any subclass-specific axes finalization steps. The user calls poof and poof calls finalize.

Parameters
kwargs: generic keyword arguments.

score (X, y=None, **kwargs)
The score function is the hook for visual interaction. Pass in test data and the visualizer will create predic-
tions on the data and evaluate them with respect to the test values. The evaluation will then be passed to
draw() and the result of the estimator score will be returned.

Parameters
X [array-like] X (also X_test) are the dependent variables of test set to predict
y [array-like] y (also y_test) is the independent actual variables to score against

Returns

4.3. Gorsellestiriciler ve API 65

yellowbrick Documentation, Siiriim 0.5

score [float]

Alpha Selection

Regularization is designed to penalize model complexity, therefore the higher the alpha, the less complex the model,
decreasing the error due to variance (overfit). Alphas that are too high on the other hand increase the error due to bias
(underfit). It is important, therefore to choose an optimal alpha such that the error is minimized in both directions.

The AlphaSelection Visualizer demonstrates how different values of alpha influence model selection during the regu-
larization of linear models. Generally speaking, alpha increases the affect of regularization, e.g. if alpha is zero there
is no regularization and the higher the alpha, the more the regularization parameter influences the final model.

Load the data

df = load_data('concrete')
feature_names = ['cement', 'slag', 'ash', 'water', 'splast', 'coarse', 'fine', 'age']
target_name = 'strength'

Get the X and y data from the DataFrame
X = df[feature_names].as_matrix ()
y = df [target_name] .as_matrix()

Create the train and test data
X_train, X_test, y_train, y_test = train_test_split (X, y, test_size=0.2)

Create a list of alphas to cross-validate against
alphas = np.logspace(-12, -0.5, 400)

Instantiate the linear model and visualizer
model = LassoCV (alphas=alphas)
visualizer = AlphaSelection (model)

visualizer.fit (X_train, y_train) # Fit the training data to the visualizer
g = visualizer.poof () # Draw/show/poof the data

66 Bolim 4. icindekiler Tablosu

yellowbrick Documentation, Siiriim 0.5

+1.115e2 LassoCV Alpha Error

0.0750

0.0725

0.0700

0.0675

or score)

= 0.0850

r

Erro

0.0625

0.0600

0.0575

0.00 0.05 0.10 015 020 0.25 0.30
alpha

API Reference

Implements alpha selection visualizers for regularization

class yellowbrick.regressor.alphas.AlphaSelection (model, ax=None, **kwargs)
Bases: yellowbrick.regressor.base.RegressionScoreVisualizer

The Alpha Selection Visualizer demonstrates how different values of alpha influence model selection during the
regularization of linear models. Generally speaking, alpha increases the affect of regularization, e.g. if alpha is
zero there is no regularization and the higher the alpha, the more the regularization parameter influences the
final model.

Regularization is designed to penalize model complexity, therefore the higher the alpha, the less complex the
model, decreasing the error due to variance (overfit). Alphas that are too high on the other hand increase the
error due to bias (underfit). It is important, therefore to choose an optimal Alpha such that the error is minimized
in both directions.

To do this, typically you would you use one of the “RegressionCV” models in Scikit-Learn. E.g. instead of
using the Ridge (L2) regularizer, you can use RidgeCV and pass a list of alphas, which will be selected
based on the cross-validation score of each alpha. This visualizer wraps a “RegressionCV” model and visualizes
the alpha/error curve. Use this visualization to detect if the model is responding to regularization, e.g. as you
increase or decrease alpha, the model responds and error is decreased. If the visualization shows a jagged or
random plot, then potentially the model is not sensitive to that type of regularization and another is required
(e.g. L1 or Lasso regularization).

Parameters

4.3. Gorsellestiriciler ve API 67

yellowbrick Documentation, Siiriim 0.5

model [a Scikit-Learn regressor] Should be an instance of a regressor, and specifically one
whose name ends with “CV” otherwise a will raise a YellowbrickTypeError exception on
instantiation. To use non-CV regressors see: ManualAlphaSelection.

ax [matplotlib Axes, default: None] The axes to plot the figure on. If None is passed in the
current axes will be used (or generated if required).

kwargs [dict] Keyword arguments that are passed to the base class and may influence the visu-
alization as defined in other Visualizers.

Notes

This class expects an estimator whose name ends with “CV”. If you wish to use some other estimator, please
see the ManualAlphaSelection Visualizer for manually iterating through all alphas and selecting the best
one.

This Visualizer hoooks into the Scikit-Learn API during £it (). In order to pass a fitted model to the Visualizer,
call the draw () method directly after instantiating the visualizer with the fitted model.

Note, each “RegressorCV” module has many different methods for storing alphas and error. This visualizer
attempts to get them all and is known to work for RidgeCV, LassoCV, LassoLarsCV, and ElasticNetCV. If your
favorite regularization method doesn’t work, please submit a bug report.

For RidgeCV, make sure store_cv_values=True.

Examples

>>> from yellowbrick.regressor import AlphaSelection
>>> from sklearn.linear model import LassoCV

>>> model = AlphaSelection (LassoCV())

>>> model.fit (X, vy)

>>> model.poof ()

draw ()
Draws the alpha plot based on the values on the estimator.

finalize()
Prepare the figure for rendering by setting the title as well as the X and Y axis labels and adding the legend.

fit (X, y, **kwargs)
A simple pass-through method; calls fit on the estimator and then draws the alpha-error plot.

class yellowbrick.regressor.alphas.ManualAlphaSelection (model, ax=None, alp-
has=None, cv=None,

scoring=None, **kwargs)
Bases: yellowbrick.regressor.alphas.AlphaSelection

The AlphaSelection visualizer requires a “RegressorCV”, that is a specialized class that performs cross-
validated alpha-selection on behalf of the model. If the regressor you wish to use doesn’t have an associated
“CV” estimator, or for some reason you would like to specify more control over the alpha selection process, then
you can use this manual alpha selection visualizer, which is essentially a wrapper for cross_val_score,
fitting a model for each alpha specified.

Parameters

model [a Scikit-Learn regressor] Should be an instance of a regressor, and specifically
one whose name doesn’t end with “CV”. The regressor must support a call to

68 Bolim 4. icindekiler Tablosu

yellowbrick Documentation, Siiriim 0.5

set_params (alpha=alpha) and be fit multiple times. If the regressor name ends with
“CV”aYellowbrickValueError is raised.

ax [matplotlib Axes, default: None] The axes to plot the figure on. If None is passed in the
current axes will be used (or generated if required).

alphas [ndarray or Series, default: np.logspace(-10, 2, 200)] An array of alphas to fit each model
with

cv [int, cross-validation generator or an iterable, optional] Determines the cross-validation sp-
litting strategy. Possible inputs for cv are:

¢ None, to use the default 3-fold cross validation,

* integer, to specify the number of folds in a (Stratified)KFold,
* An object to be used as a cross-validation generator.

e An iterable yielding train, test splits.

This argument is passed to the sklearn.model_selection.cross_val_score
method to produce the cross validated score for each alpha.

scoring [string, callable or None, optional, default: None] A string (see model evaluation do-
cumentation) or a scorer callable object / function with signature scorer (estimator,
X, y).

This argument is passed to the sklearn.model_selection.cross_val_score
method to produce the cross validated score for each alpha.

kwargs [dict] Keyword arguments that are passed to the base class and may influence the visu-
alization as defined in other Visualizers.

Notes

This class does not take advantage of estimator-specific searching and is therefore less optimal and more time
consuming than the regular “RegressorCV” estimators.

Examples

>>> from yellowbrick.regressor import ManualAlphaSelection
>>> from sklearn.linear_model import Ridge
>>> model = ManualAlphaSelection (

Ridge (), cv=12, scoring='neg_mean_squared_error'

>>> model.fit (X, vy)
>>> model.poof ()

draw ()
Draws the alphas values against their associated error in a similar fashion to the AlphaSelection visualizer.

fit (X, y, **args)
The fit method is the primary entry point for the manual alpha selection visualizer. It sets the alpha param
for each alpha in the alphas list on the wrapped estimator, then scores the model using the passed in X and
y data set. Those scores are then aggregated and drawn using matplotlib.

4.3. Gorsellestiriciler ve API 69

yellowbrick Documentation, Siiriim 0.5

4.3.5 Classification Visualizers

Classification models attempt to predict a target in a discrete space, that is assign an instance of dependent variables
one or more categories. Classification score visualizers display the differences between classes as well as a number of
classifier-specific visual evaluations. We currently have implemented four classifier evaluations:

* Classification Report: Presents the classification report of the classifier as a heatmap

» Confusion Matrix: Presents the confusion matrix of the classifier as a heatmap

ROCAUC: Presents the graph of receiver operating characteristics along with area under the curve
* Class Balance: Displays the difference between the class balances and support
e Threshold: Shows the bounds of precision, recall and queue rate after a number of trials.

Estimator score visualizers wrap Scikit-Learn estimators and expose the Estimator API such that they have fit(), pre-
dict(), and score() methods that call the appropriate estimator methods under the hood. Score visualizers can wrap an
estimator and be passed in as the final step in a Pipeline or VisualPipeline.

Classifier Evaluation Imports

from sklearn.naive_bayes import GaussianNB

from sklearn.linear model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split

from yellowbrick.classifier import ClassificationReport, ROCAUC, ClassBalance,
—ThresholdVviz

Classification Report

The classification report visualizer displays the precision, recall, and F1 scores for the model. In order to support easier
interpretation and problem detection, the report integrates numerical scores with a color-coded heatmap.

Load the classification data set
data = load_data('occupancy')

Specify the features of interest and the classes of the target
features = ["temperature", "relative humidity", "light", "CO02", "humidity"]
classes = ['unoccupied', 'occupied']

Extract the numpy arrays from the data frame
X = data[features].as_matrix ()
y = data.occupancy.as_matrix()

Create the train and test data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

Instantiate the classification model and visualizer
bayes = GaussianNB()
visualizer = ClassificationReport (bayes, classes=classes)

visualizer.fit (X_train, y_train) # Fit the training data to the visualizer
visualizer.score (X_test, y_test) # Evaluate the model on the test data
g = visualizer.poof () # Draw/show/poof the data

70 Bolim 4. icindekiler Tablosu

yellowbrick Documentation, Siiriim 0.5

GaussianNB Classification Report

unoccupied

Classes

occupied

API Reference

Visual classification report for classifier scoring.

class yellowbrick.classifier.classification_report.ClassificationReport (model,
ax=None,

clas-
ses=None,
*tkwargs)

Bases: yellowbrick.classifier.base.ClassificationScoreVisualizer
Classification report that shows the precision, recall, and F1 scores for the model. Integrates numerical scores as

well as a color-coded heatmap.

Parameters
ax [The axis to plot the figure on.]
model [the Scikit-Learn estimator] Should be an instance of a classifier, else the __init_ will
return an error.

classes [a list of class names for the legend] If classes is None and a y value is passed to fit then
the classes are selected from the target vector.

colormap [optional string or matplotlib cmap to colorize lines] Use sequential heatmap.

kwargs [keyword arguments passed to the super class.]

4.3. Gorsellestiriciler ve API 71

yellowbrick Documentation, Siiriim 0.5

Examples

>>> from yellowbrick.classifier import ClassificationReport
>>> from sklearn.linear _model import LogisticRegression

>>> viz = ClassificationReport (LogisticRegression())

>>> viz.fit (X_train, y_train)

>>> viz.score (X_test, y_test)

>>> viz.poof ()

draw (y, y_pred)
Renders the classification report across each axis.

Parameters
y [ndarray or Series of length n] An array or series of target or class values
y_pred [ndarray or Series of length n] An array or series of predicted target values

finalize (**kwargs)
Finalize executes any subclass-specific axes finalization steps. The user calls poof and poof calls finalize.

Parameters
kwargs: generic keyword arguments.

score (X, y=None, **kwargs)
Generates the Scikit-Learn classification_report

Parameters
X' [ndarray or DataFrame of shape n x m] A matrix of n instances with m features

y [ndarray or Series of length n] An array or series of target or class values

Confusion Matrix

The ConfusionMatrix visualizer is a ScoreVisualizer that takes a fitted Scikit-Learn classifier and a set of test X
and y values and returns a report showing how each of the test values predicted classes compare to their actual classes.
Data scientists use confusion matrices to understand which classes are most easily confused. These provide similar
information as what is available in a ClassificationReport, but rather than top-level scores they provide deeper insight
into the classification of individual data points.

Below are a few examples of using the ConfusionMatrix visualizer; more information can be found by looking at the
Scikit-Learn documentation on confusion matrices.

#First do our imports
import yellowbrick

from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split

from sklearn.linear model import LogisticRegression

from yellowbrick.classifier import ConfusionMatrix

We'll use the handwritten digits data set from scikit-learn.

Each feature of this dataset is an 8x8 pixel image of a handwritten number.
Digits.data converts these 64 pixels into a single array of features
digits = load_digits()

X = digits.data

(continues on next page)

72 Bolim 4. icindekiler Tablosu

http://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html

yellowbrick Documentation, Siiriim 0.5

(onceki sayfadan devam)

y = digits.target

X_train, X_test, y_train, y_test = train_test_split(X,y, test_size =0.2, random__
—state=11)

model = LogisticRegression ()

#The ConfusionMatrix visualizer taxes a model
cm = ConfusionMatrix (model, classes=[0,1,2,3,4,5,6,7,8,91)

#Fit fits the passed model. This 1s unnecessary 1f you pass the visualizer a pre-
—~fitted model
cm.fit (X_train, y_train)

#To create the ConfusionMatrix, we need some test data. Score runs predict () on the,
—data

#and then creates the confusion _matrix from scikit learn.

cm.score (X_test, y_test)

#How did we do?
cm.poof ()

LogisticRegression Confusion Matrix

True Class

b [T=]
Predicted Class

API Reference

Visual confusion matrix for classifier scoring.

4.3. Gorsellestiriciler ve API 73

yellowbrick Documentation, Siiriim 0.5

class yellowbrick.classifier.confusion_matrix.ConfusionMatrix (model, ax=None,

classes=None, la-
bel_encoder=None,
**kwargs)

Bases: yellowbrick.classifier.base.ClassificationScoreVisualizer

Creates a heatmap visualization of the sklearn.metrics.confusion_matrix(). A confusion matrix shows each com-
bination of the true and predicted classes for a test data set.

The default color map uses a yellow/orange/red color scale. The user can choose between displaying values as
the percent of true (cell value divided by sum of row) or as direct counts. If percent of true mode is selected,
100% accurate predictions are highlighted in green.

Requires a classification model
Parameters

model [the Scikit-Learn estimator] Should be an instance of a classifier or __init__ will return
an error.

ax [the matplotlib axis to plot the figure on (if None, a new axis will be created)]

classes [list, default: None] a list of class names to use in the confusion_matrix. This is passed
to the ‘labels’ parameter of sklearn.metrics.confusion_matrix(), and follows the behaviour
indicated by that function. It may be used to reorder or select a subset of labels. If None,
values that appear at least once in y_true or y_pred are used in sorted order.

label_encoder [dict or LabelEncoder, default: None] When specifying the classes argument,
the input to £it () and score () must match the expected labels. If the X and y datasets
have been encoded prior to training and the labels must be preserved for the visualization,
use this argument to provide a mapping from the encoded class to the correct label. Beca-
use typically a Scikit-Learn LabelEncoder is used to perform this operation, you may
provide it directly to the class to utilize its fitted encoding.

Examples

>>> from yellowbrick.classifier import ConfusionMatrix
>>> from sklearn.linear _model import LogisticRegression
>>> viz = ConfusionMatrix (LogisticRegression())

>>> viz.fit (X_train, y_train)

>>> viz.score (X_test, y_test)

>>> viz.poof ()

draw (percent=True)
Renders the classification report Should only be called internally, as it uses values calculated in Score and
score calls this method.

Parameters
percent: Boolean Whether the heatmap should represent “% of True” or raw counts

finalize (**kwargs)
Finalize executes any subclass-specific axes finalization steps.

Parameters

kwargs: dict generic keyword arguments.

Bolim 4. icindekiler Tablosu

yellowbrick Documentation, Siiriim 0.5

Notes

The user calls poof and poof calls finalize. Developers should implement visualizer-specific finalization
methods like setting titles or axes labels, etc.

score (X, y, sample_weight=None, percent=True)
Generates the Scikit-Learn confusion_matrix and applies this to the appropriate axis

Parameters
X [ndarray or DataFrame of shape n x m] A matrix of n instances with m features
y [ndarray or Series of length n] An array or series of target or class values
sample_weight: optional, passed to the confusion_matrix

percent: optional, Boolean. Determines whether or not the confusion_matrix should be
displayed as raw numbers or as a percent of the true predictions. Note, if using a subset of
classes in __init__, percent should be set to False or inaccurate percents will be displayed.

ROCAUC

A ROCAUC (Receiver Operating Characteristic/Area Under the Curve) plot allows the user to visualize the tradeoff
between the classifier’s sensitivity and specificity.

Load the classification data set
data = load_data('occupancy')

Specify the features of interest and the classes of the target
features = ["temperature", "relative humidity", "light", "CO02", "humidity"]
classes = ['unoccupied', 'occupied']

Extract the numpy arrays from the data frame
X = datal[features].as_matrix|()
y = data.occupancy.as_matrix()

Create the train and test data
X_train, X_test, y_train, y_test = train_test_split (X, y, test_size=0.2)

Instantiate the classification model and visualizer
logistic = LogisticRegression()
visualizer = ROCAUC (logistic)

visualizer.fit (X_train, y_train) # Fit the training data to the visualizer
visualizer.score (X_test, y_test) # Evaluate the model on the test data
g = visualizer.poof () # Draw/show/poof the data

4.3. Gorsellestiriciler ve API 75

yellowbrick Documentation, Siiriim 0.5

ROC Curves for LogisticRegression

1.0 ——
. .
08 1
> o
g 06 ot
© .
= .
b7
=] .
o
S 04 o
= | -
|
|
|
| o
02 | —— ROC of class 0, AUC = 0.99
ROC of class 1, AUC = 0.99
——- micro-average ROC curve, AUC =1.00
. ——- macro-average ROC curve, AUC =0.99
0.0 *
0.0 02 04 06 0.8 1.0

False Positive Rate

API Reference

Implements visual ROC/AUC curves for classification evaluation.

class yellowbrick.classifier.rocauc.ROCAUC (model, ax=None, classes=None, micro=True,

macro=True, per_class=True, **kwargs)

Bases: yellowbrick.classifier.base.ClassificationScoreVisualizer

Receiver Operating Characteristic (ROC) curves are a measure of a classifier’s predictive quality that compares
and visualizes the tradeoff between the models’ sensitivity and specificity. The ROC curve displays the true
positive rate on the Y axis and the false positive rate on the X axis on both a global average and per-class basis.
The ideal point is therefore the top-left corner of the plot: false positives are zero and true positives are one.

This leads to another metric, area under the curve (AUC), a computation of the relationship between false posi-
tives and true positives. The higher the AUC, the better the model generally is. However, it is also important to
inspect the “steepness” of the curve, as this describes the maximization of the true positive rate while minimi-
zing the false positive rate. Generalizing “steepness” usually leads to discussions about convexity, which we do
not get into here.

Parameters

ax [the axis to plot the figure on.]

model [the Scikit-Learn estimator] Should be an instance of a classifier, else the __init_ will
return an error.

classes [list] A list of class names for the legend. If classes is None and a y value is passed to fit
then the classes are selected from the target vector. Note that the curves must be computed

76

Bolim 4. icindekiler Tablosu

yellowbrick Documentation, Siiriim 0.5

based on what is in the target vector passed to the score () method. Class names are used
for labeling only and must be in the correct order to prevent confusion.

micro [bool, default = True] Plot the micro-averages ROC curve, computed from the sum of all
true positives and false positives across all classes.

macro [bool, default = True] Plot the macro-averages ROC curve, which simply takes the ave-

rage of curves across all classes.

per_class [bool, default = True] Plot the ROC curves for each individual class. Primarily this is
set to false if only the macro or micro average curves are required.

kwargs [keyword arguments passed to the super class.] Currently passing in hard-coded colors
for the Receiver Operating Characteristic curve and the diagonal. These will be refactored

to a default Yellowbrick style.

Notes

ROC curves are typically used in binary classification, and in fact the Scikit-Learn roc_curve metric is only
able to perform metrics for binary classifiers. As a result it is necessary to binarize the output or to use one-
vs-rest or one-vs-all strategies of classification. The visualizer does its best to handle multiple situations, but
exceptions can arise from unexpected models or outputs.

Another important point is the relationship of class labels specified on initialization to those drawn on the
curves. The classes are not used to constrain ordering or filter curves; the ROC computation happens on the
unique values specified in the target vector to the score method. To ensure the best quality visualization, do
not use a LabelEncoder for this and do not pass in class labels.

Ayrica bkz.:

http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html

Examples

>>> from
>>> from
>>> from
>>> from
>>> data
>>> X =

>>> y =

>>> viz

sklearn.datasets import load_breast_cancer
yellowbrick.classifier import ROCAUC
sklearn.linear_model import LogisticRegression
sklearn.model_selection import train_test_split
load_breast_cancer ()

data['data']
data['target']
>>> X_train, X_test, y_train, y_test = train_test_split (X, vy)

ROCAUC (LogisticRegression())

>>> viz.fit(X_train, y_train)
>>> viz.score (X_test, y_test)
>>> viz.poof ()

draw ()

Renders ROC-AUC plot. Called internally by score, possibly more than once

Returns

ax [the axis with the plotted figure]

finalize (**kwargs)
Finalize executes any subclass-specific axes finalization steps. The user calls poof and poof calls finalize.

Parameters

4.3. Gorsellestiriciler ve API

77

http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html

yellowbrick Documentation, Siiriim 0.5

kwargs: generic keyword arguments.

score (X, y=None, **kwargs)
Generates the predicted target values using the Scikit-Learn estimator.

Parameters
X [ndarray or DataFrame of shape n x m] A matrix of n instances with m features
y [ndarray or Series of length n] An array or series of target or class values
Returns

score [float] The micro-average area under the curve of all classes.

Class Balance

Oftentimes classifiers perform badly because of a class imbalance. A class balance chart can help prepare the user for
such a case by showing the support for each class in the fitted classification model.

Load the classification data set
data = load_data ('occupancy')

Specify the features of interest and the classes of the target
features = ["temperature", "relative humidity", "light", "CO02", "humidity"]
classes = ['unoccupied', 'occupied']

Extract the numpy arrays from the data frame
= data[features].as_matrix()
data.occupancy.as_matrix()

<X
Il

Create the train and test data
X_train, X_test, y_train, y_test = train_test_split (X, y, test_size=0.2)

Instantiate the classification model and visualizer
forest = RandomForestClassifier()
visualizer = ClassBalance (forest, classes=classes)

visualizer.fit (X_train, y_train) # Fit the training data to the visualizer
visualizer.score (X_test, y_test) # Evaluate the model on the test data
g = visualizer.poof () # Draw/show/poof the data

78 Bolim 4. icindekiler Tablosu

yellowbrick Documentation, Surim 0.5

Class Balance for RandomForestClassifier
3500

3000

2500

2000

1500

1000

500

unoccupied occupied

API Reference

Class balance visualizer for showing per-class support.

class yellowbrick.classifier.class_balance.ClassBalance (model, ax=None, clas-

ses=None, **kwargs)
Bases: yellowbrick.classifier.base.ClassificationScoreVisualizer

Class balance chart that shows the support for each class in the fitted classification model displayed as a bar plot.
It is initialized with a fitted model and generates a class balance chart on draw.

Parameters
ax: axes the axis to plot the figure on.

model: estimator Scikit-Learn estimator object. Should be an instance of a classifier, else
__init__ () will raise an exception.

classes: list A list of class names for the legend. If classes is None and a y value is passed to fit
then the classes are selected from the target vector.

kwargs: dict Keyword arguments passed to the super class. Here, used to colorize the bars in
the histogram.

Notes

These parameters can be influenced later on in the visualization process, but can and should be set as early as
possible.

4.3. Gorsellestiriciler ve API 79

yellowbrick Documentation, Siiriim 0.5

draw ()
Renders the class balance chart across the axis.

Returns
ax [the axis with the plotted figure]

finalize (**kwargs)
Finalize executes any subclass-specific axes finalization steps. The user calls poof and poof calls finalize.

Parameters
kwargs: generic keyword arguments.

score (X, y=None, **kwargs)
Generates the Scikit-Learn precision_recall_fscore_support

Parameters
X [ndarray or DataFrame of shape n x m] A matrix of n instances with m features
y [ndarray or Series of length n] An array or series of target or class values
Returns

ax [the axis with the plotted figure]

Threshold

The Threshold visualizer shows the bounds of precision, recall and queue rate for different thresholds for binary targets
after a given number of trials.

Load the data set

data = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/
—spambase/spambase.data', header=None)

data.rename (columns={57:'is_spam'}, inplace=True)

features = [col for col in data.columns if col != 'is_spam']
Extract the numpy arrays from the data frame

X = data[features].as_matrix ()

y = data.is_spam.as_matrix()

Instantiate the classification model and visualizer
logistic = LogisticRegression()
visualizer = ThreshViz (logistic)

visualizer.fit (X, vy) # Fit the training data to the visualizer
g = visualizer.poof () # Draw/show/poof the data

80 Bolim 4. icindekiler Tablosu

yellowbrick Documentation, Siiriim 0.5

Threshold Plot of Binary Classifier

1.0
08
06
=
©
2
[1k)
[= %
04
02
—— precision
recall
00 — —— queue_rate
0.0 02 0.4 0.6 08 1.0

threshold

API Reference

yellowbrick.classifier.threshold.ThreshViz
sunun takma adi: yellowbrick.classifier.threshold.ThresholdVisualizer

4.3.6 Clustering Visualizers

Clustering models are unsupervised methods that attempt to detect patterns in unlabeled data. There are two primary
classes of clustering algorithm: agglomerative clustering links similar data points together, whereas centroidal cluste-
ring attempts to find centers or partitions in the data. Yellowbrick provides the yellowbrick.cluster module to visualize
and evaluate clustering behavior. Currently we provide two visualizers to evaluate centroidal mechanisms, particularly
K-Means clustering, that help us to discover an optimal K parameter in the clustering metric:

» Elbow Method: visualize the clusters according to some scoring function, look for an “elbow” in the curve.
e Silhouette Visualizer: visualize the silhouette scores of each cluster in a single model.

Because it is very difficult to score a clustering model, Yellowbrick visualizers wrap Scikit-Learn “clusterer” estimators
via their fif() method. Once the clustering model is trained, then the visualizer can call poof{) to display the clustering
evaluation metric.

Elbow Method

The elbow method for K selection visualizes multiple clustering models with different values for K. Model selection
is based on whether or not there is an “elbow” in the curve; e.g. if the curve looks like an arm, if there is a clear change

4.3. Gorsellestiriciler ve API 81

yellowbrick Documentation, Siiriim 0.5

in angle from one part of the curve to another.

Make 8 blobs dataset
X, y = make_blobs (centers=8)

Instantiate the clustering model and visualizer
visualizer = KElbowVisualizer (MiniBatchKMeans (), k=(4,12))

visualizer.fit(X) # Fit the training data to the visualizer
visualizer.poof () # Draw/show/poof the data

Distortion Score Elbow for MiniBatchKMeans Clustering

500

450

400

350

300

distortion score

250
200
150

100

API Reference

Implements the elbow method for determining the optimal number of clusters. https://bl.ocks.org/rpgove/
0060ff3b656618e9136b

class yellowbrick.cluster.elbow.KElbowVisualizer (model, ax=None, k=10, met-
ric="distortion’, timings=True,
**kwargs)
Bases: yellowbrick.cluster.base.ClusteringScoreVisualizer

The K-Elbow Visualizer implements the “elbow” method of selecting the optimal number of clusters for K-
means clustering. K-means is a simple unsupervised machine learning algorithm that groups data into a specified
number (k) of clusters. Because the user must specify in advance what k to choose, the algorithm is somewhat
naive — it assigns all members to k clusters even if that is not the right k for the dataset.

The elbow method runs k-means clustering on the dataset for a range of values for k (say from 1-10) and then for

82 Bolim 4. icindekiler Tablosu

https://bl.ocks.org/rpgove/0060ff3b656618e9136b
https://bl.ocks.org/rpgove/0060ff3b656618e9136b

yellowbrick Documentation, Siiriim 0.5

each value of k computes an average score for all clusters. By default, the distortion_score is computed,
the sum of square distances from each point to its assigned center. Other metrics can also be used such as the
silhouette_score, the mean silhouette coefficient for all samples or the calinski_harabaz_score,
which computes the ratio of dispersion between and within clusters.

When these overall metrics for each model are plotted, it is possible to visually determine the best value for K.
If the line chart looks like an arm, then the “elbow” (the point of inflection on the curve) is the best value of
k. The “arm” can be either up or down, but if there is a strong inflection point, it is a good indication that the
underlying model fits best at that point.

Parameters

model [a Scikit-Learn clusterer] Should be an instance of a clusterer, specifically KMeans or
MiniBatchKMeans. If it is not a clusterer, an exception is raised.

ax [matplotlib Axes, default: None] The axes to plot the figure on. If None is passed in the
current axes will be used (or generated if required).

k [integer or tuple] The range of k to compute silhouette scores for. If a single integer is speci-
fied, then will compute the range (2,k) otherwise the specified range in the tuple is used.

metric [string, default: "distortion"] Select the scoring metric to evaluate the clusters.
The default is the mean distortion, defined by the sum of squared distances between each
observation and its closest centroid. Other metrics include:

* distortion: mean sum of squared distances to centers
« silhouette: mean ratio of intra-cluster and nearest-cluster distance
« calinski_harabaz: ratio of within to between cluster dispersion

timings [bool, default: True] Display the fitting time per k to evaluate the amount of time requ-
ired to train the clustering model.

kwargs [dict] Keyword arguments that are passed to the base class and may influence the visu-
alization as defined in other Visualizers.

Notes

If you get a visualizer that doesn’t have an elbow or inflection point, then this method may not be working. The
elbow method does not work well if the data is not very clustered; in this case you might see a smooth curve and
the value of k is unclear. Other scoring methods such as BIC or SSE also can be used to explore if clustering is
a correct choice.

For a discussion on the Elbow method, read more at Robert Gove’s Block.

Examples

>>> from yellowbrick.cluster import KElbowVisualizer
>>> from sklearn.cluster import KMeans

>>> model = KElbowVisualizer (KMeans (), k=10)

>>> model. fit (X)

>>> model.poof ()

draw ()
Draw the elbow curve for the specified scores and values of K.

finalize()
Prepare the figure for rendering by setting the title as well as the X and Y axis labels and adding the legend.

4.3. Gorsellestiriciler ve API 83

https://bl.ocks.org/rpgove/0060ff3b656618e9136b

yellowbrick Documentation, Siiriim 0.5

fit (X, y=None, **kwargs)
Fits n KMeans models where n is the length of self.k_values_, storing the silhoutte scores in the
self.k_scores_ attribute. This method finishes up by calling draw to create the plot.

Silhouette Visualizer

The Silhouette Coefficient is used when the ground-truth about the dataset is unknown and computes the density
of clusters computed by the model. The score is computed by averaging the silhouette coefficient for each sample,
computed as the difference between the average intra-cluster distance and the mean nearest-cluster distance for each
sample, normalized by the maximum value. This produces a score between 1 and -1, where 1 is highly dense clusters
and -1 is completely incorrect clustering.

The Silhouette Visualizer displays the silhouette coefficient for each sample on a per-cluster basis, visualizing which
clusters are dense and which are not. This is particularly useful for determining cluster imbalance, or for selecting a
value for K by comparing multiple visualizers.

Make 8 blobs dataset
X, y = make_blobs (centers=8)

Instantiate the clustering model and visualizer
model = MiniBatchKMeans (6)
visualizer = SilhouetteVisualizer (model)

visualizer.fit (X) # Fit the training data to the visualizer
visualizer.poof () # Draw/show/poof the data

Silhouette Plot of MiniBatchKMeans Clustering for 1000 Samples in 6 Centers

5

cluster label
3%}

-1.0 -08 -0.6 -0.4 -0.2 0.0 02 0.4 0.6 0.8 1.0
silhouette coefficient values

84 Bolim 4. icindekiler Tablosu

yellowbrick Documentation, Siiriim 0.5

API Reference

Implements visualizers that use the silhouette metric for cluster evaluation.

class yellowbrick.cluster.silhouette.SilhouetteVisualizer (model, ax=None,

**kwargs)
Bases: yellowbrick.cluster.base.ClusteringScoreVisualizer

TODO: Document this class!

draw (labels)
Draw the silhouettes for each sample and the average score.

Parameters

labels [array-like] An array with the cluster label for each silhouette sample, usually com-
puted with predict (). Labels are not stored on the visualizer so that the figure can be
redrawn with new data.

finalize()
Prepare the figure for rendering by setting the title and adjusting the limits on the axes, adding labels and
a legend.

fit (X, y=None, **kwargs)
Fits the model and generates the the silhouette visualization.

TODO: decide to use this method or the score method to draw. NOTE: Probably this would be better in
score, but the standard score is a little different and I’'m not sure how it’s used.

4.3.7 Text Modeling Visualizers

Yellowbrick provides the yellowbrick.text module for text-specific visualizers. The TextVisualizer class specifically
deals with datasets that are corpora and not simple numeric arrays or DataFrames, providing utilities for analyzing
word distribution, showing document similarity, or simply wrapping some of the other standard visualizers with text-
specific display properties.

We currently have two text-specific visualizations implemented:
» Token Frequency Distribution: plot the frequency of tokens in a corpus
* 1-SNE Corpus Visualization: plot similar documents closer together to discover clusters

Note that the examples in this section require a corpus of text data, see loading a text corpus for more information.

from yellowbrick.text import FregDistVisualizer
from yellowbrick.text import TSNEVisualizer

from sklearn.feature extraction.text import TfidfVectorizer
from sklearn.feature_extraction.text import CountVectorizer

Loading a Text Corpus

As in the previous sections, Yellowbrick has provided a sample dataset to run the following cells. In particular, we are
going to use a text corpus wrangled from the Baleen RSS Corpus to present the following examples. If you haven’t
already downloaded the data, you can do so by running:

$ python -m yellowbrick.download

4.3. Gorsellestiriciler ve API 85

http://baleen.districtdatalabs.com/

yellowbrick Documentation, Siiriim 0.5

Note that this will create a directory called data in your current working directory that contains subdirectories with
the provided datasets.

Not: If you’ve already followed the instructions from downloading example datasets, you don’t have to repeat these
steps here. Simply check to ensure there is a directory called hobbies in your data directory.

The following code snippet creates a utility that will load the corpus from disk into a Scikit-Learn Bunch object. This
method creates a corpus that is exactly the same as the one found in the “working with text data” example on the
Scikit-Learn website, hopefully making the examples easier to use.

import os
from sklearn.datasets.base import Bunch

def load_corpus (path):

mmn

Loads and wrangles the passed in text corpus by path.

mmn

Check 1f the data exists, otherwise download or raise
if not os.path.exists (path):
raise ValueError ((
"' {}' dataset has not been downloaded, "
"use the yellowbrick.download module to fetch datasets"

) . format (path))

Read the directories in the directory as the categories.
categories = [

cat for cat in os.listdir (path)

if os.path.isdir (os.path. join(path, cat))

files = [] # holds the file names relative to the root
data = [] # holds the text read from the file
target = [] # holds the string of the category

Load the data from the files in the corpus
for cat in categories:
for name in os.listdir (os.path.join(path, cat)):
files.append(os.path.join (path, cat, name))
target.append(cat)

with open(os.path.join(path, cat, name), 'r') as f:
data.append(f.read())

Return the data bunch for use similar to the newsgroups example
return Bunch (

categories=categories,

files=files,

data=data,

target=target,

This is a fairly long ibt of code, so let’s walk through it step by step. The data in the corpus directory is stored as
follows:

86 Bolim 4. icindekiler Tablosu

http://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html

yellowbrick Documentation, Siiriim 0.5

data/hobbies
|: README . md

books
| 56d62a53¢c1808113ffb87f1f.txt
| 5745a9c7¢c180810bebefd70b.txt
L— cinema
| 56d62905¢c1808113ffb87d8f.txt
| 57408e5fc180810bebe574c8.txt
— cooking
| 56d62b25¢c1808113ffb8813b.txt
| 573f0728c180810bebe2575c.txt
L gaming
| 56d62654c1808113ffb87938.txt
| 574585d7¢180810bebef7ffc.txt
L sports

|: 56d62adec1808113£fb88054 . txt

56d70f17¢c180810560aec345.txt

Each of the documents in the corpus is stored in a text file labeled with its hash signature in a directory that specifies
its label or category. Therefore the first step after checking to make sure the specified path exists is to list all the
directories in the hobbies directory — this gives us each of our categories, which we will store later in the bunch.

The second step is to create placeholders for holding filenames, text data, and labels. We can then loop through the
list of categories, list the files in each category directory, add those files to the files list, add the category name to the
target list, then open and read the file to add it to data.

To load the corpus into memory, we can simply use the following snippet:

corpus = load_corpus ("data/hobbies™)

We’ll use this snippet in all of the text examples in this section!

Token Frequency Distribution

A method for visualizing the frequency of tokens within and across corpora is frequency distribution. A frequency
distribution tells us the frequency of each vocabulary item in the text. In general, it could count any kind of observable
event. It is a distribution because it tells us how the total number of word tokens in the text are distributed across the
vocabulary items.

from yellowbrick.text.fregdist import FregDistVisualizer
from sklearn.feature_extraction.text import CountVectorizer

Note that the FregqDistVisualizer does not perform any normalization or vectorization, and it expects text that
has already be count vectorized.

We first instantiate a FregqDistVisualizer object, and then call £it () on that object with the count vectorized
documents and the features (i.e. the words from the corpus), which computes the frequency distribution. The visualizer
then plots a bar chart of the top 50 most frequent terms in the corpus, with the terms listed along the x-axis and
frequency counts depicted at y-axis values. As with other Yellowbrick visualizers, when the user invokes poof (),
the finalized visualization is shown.

vectorizer = CountVectorizer ()

docs = vectorizer.fit_transform(corpus.data)
features = vectorizer.get_feature_names ()
visualizer = FregDistVisualizer (features=features)

(continues on next page)

4.3. Gorsellestiriciler ve API 87

yellowbrick Documentation, Siiriim 0.5

(onceki sayfadan devam)

visualizer.fit (docs)
visualizer.poof ()

12000

10000

8000

6000

4000

200

(=]

0

Freguency Distribution of Top 50 tokens

vocab: 20,140 I corpus
| words: 230,051 |
hapax 3??5

q.ru ::‘-'-E-—m EELL=c>i --':q)*-‘ guuootEssEE
Buﬁ 55 aﬁgﬁﬁ o:mgmm NE_§ R222 3025
[1n)

It is interesting to compare the results of the FregDistVisualizer before and after stopwords have been removed

from the corpus:

vectorizer = CountVectorizer (stop_words='english')

docs = vectorizer.fit_transform(corpus.data)

features = vectorizer.get_feature_names ()

visualizer = FregDistVisualizer (features=features)

visualizer.fit (docs)

visualizer.poof ()

88 Bolim 4. icindekiler Tablosu

yellowbrick Documentation, Surim 0.5

Freguency Distribution of Top 50 tokens

vocab: 19,849 N corpus
words: 123,229
hapax: 8,771

600 e

S00
40
30
20

[=]

(=]

(=1

(=1

=

fb‘- = W= l:-“ T 0 O e Q lﬂ_m*“'ﬂ b
%3 pEee 3588 pEEWOREEERE ,::CW =EESE SECE2D0DE0 =
5 &:agssgg gﬁéﬂa Se=gg5F 88 nash 545e8 § % 2EOLS

It is also interesting to explore the differences in tokens across a corpus. The hobbies corpus that comes with Yellowb-
rick has already been categorized (try corpus ['categories']), so let’s visually compare the differences in the
frequency distributions for two of the categories: “cooking” and “gaming”.

from collections import defaultdict

hobbies = defaultdict (list)
for text, label in zip(corpus.data, corpus.label):
hobbies[label] .append (text)

vectorizer = CountVectorizer (stop_words='english')
docs = vectorizer.fit_transform(text for text in hobbies|['cooking'])
features = vectorizer.get_feature_names ()

visualizer = FregDistVisualizer (features=features)
visualizer.fit (docs)
visualizer.poof ()

4.3. Gorsellestiriciler ve API 89

yellowbrick Documentation, Siiriim 0.5

Freguency Distribution of Top 50 tokens

'vecab: 3,966 N corpus

140 words: 15,832
hapax: 1,671
120
100
80
60
40
0
St R p R g%gﬁgﬁggg
E 285p “ERS 2F52E0 S = S89=5
= = [=2] [=] s} 2
8 g G = = EE{ 8 &2 £ g e
vectorizer = CountVectorizer (stop_words='english')
docs = vectorizer.fit_transform(text for text in hobbies['gaming'])
features = vectorizer.get_feature_names ()
visualizer = FregDistVisualizer (features=features)
visualizer.fit (docs)
visualizer.poof ()
90 Bolim 4. icindekiler Tablosu

yellowbrick Documentation, Siiriim 0.5

Freguency Distribution of Top 50 tokens

vocab: 7,564 N corpus

waords: 30,102
400 | hapax: 3,711
350
300
250
200
150
100
DA=DUR CETSPESL OZZOE TRO Lobm= EEE$EE§¥‘“HQE‘CE‘EE“
1= —E_, 4= @ r:’_":E 0 Q)Em - LOOO— NO 55
ssg, STEE 538 ?fnﬁ&}? E BESRLRTEIMIRE 2558 5 o
g8 2 T E gt 23§
API Reference
Implementations of frequency distributions for text visualization
class yellowbrick.text.fregdist.FrequencyVisualizer (features, ax=None, n=>50,
orient="h’, color=None,
**kwargs)

Bases: yellowbrick.text.base.TextVisualizer

A frequency distribution tells us the frequency of each vocabulary item in the text. In general, it could count any

kind of observable event. It is a distribution because it tells us how the total number of word tokens in the text
are distributed across the vocabulary items.

Parameters

features [list, default: None] The list of feature names from the vectorizer, ordered by index.
E.g. a lexicon that specifies the unique vocabulary of the corpus. This can be typically fetc-
hed using the get__feature_names () method of the transformer in Scikit-Learn.

ax [matplotlib axes, default: None] The axes to plot the figure on.

n: integer, default: S0 Top N tokens to be plotted.

orient [‘h’ or ‘v’, default: ‘h’] Specifies a horizontal or vertical bar chart.
color [list or tuple of colors] Specify color for bars

kwargs [dict] Pass any additional keyword arguments to the super class.

These parameters can be influenced later on in the visualization

4.3. Gorsellestiriciler ve API 91

yellowbrick Documentation, Siiriim 0.5

process, but can and should be set as early as possible.

count (X)
Called from the fit method, this method gets all the words from the corpus and their corresponding frequ-
ency counts.

Parameters

X [ndarray or masked ndarray] Pass in the matrix of vectorized documents, can be masked
in order to sum the word frequencies for only a subset of documents.

Returns

counts [array] A vector containing the counts of all words in X (columns)

draw (**kwargs)
Called from the fit method, this method creates the canvas and draws the distribution plot on it.

Parameters
kwargs: generic keyword arguments.

finalize (**kwargs)
The finalize method executes any subclass-specific axes finalization steps. The user calls poof & poof calls
finalize.

Parameters
kwargs: generic keyword arguments.

fit (X, y=None)
The fit method is the primary drawing input for the frequency distribution visualization. It requires vecto-
rized lists of documents and a list of features, which are the actual words from the original corpus (needed
to label the x-axis ticks).

Parameters

X [ndarray or DataFrame of shape n x m] A matrix of n instances with m features represen-
ting the corpus of frequency vectorized documents.

y [ndarray or DataFrame of shape n] Labels for the documents for conditional frequency
distribution.

.. note:: Text documents must be vectorized before ““fit()¢¢.

t-SNE Corpus Visualization

One very popular method for visualizing document similarity is to use t-distributed stochastic neighbor embedding,
t-SNE. Scikit-Learn implements this decomposition method as the sklearn.manifold.TSNE transformer. By
decomposing high-dimensional document vectors into 2 dimensions using probability distributions from both the
original dimensionality and the decomposed dimensionality, t-SNE is able to effectively cluster similar documents. By
decomposing to 2 or 3 dimensions, the documents can be visualized with a scatter plot.

Unfortunately, TSNE is very expensive, so typically a simpler decomposition method such as SVD or PCA is applied
ahead of time. The TSNEVisualizer creates an inner transformer pipeline that applies such a decomposition first
(SVD with 50 components by default), then performs the t-SNE embedding. The visualizer then plots the scatter plot,
coloring by cluster or by class, or neither if a structural analysis is required.

from yellowbrick.text import TSNEVisualizer
from sklearn.feature_extraction.text import TfidfVectorizer

After importing the required tools, we can load the corpus and vectorize the text using TF-IDF.

92 Bolim 4. icindekiler Tablosu

yellowbrick Documentation, Surim 0.5

Load the data and create document vectors

corpus = load_corpus ('hobbies")

tfidf = TfidfVectorizer()

docs = tfidf.fit_transform(corpus.data)
labels = corpus.target

Now that the corpus is vectorized we can visualize it, showing the distribution of classes.

Create the visualizer and draw the vectors
tsne = TSNEVisualizer ()

tsne.fit (docs, labels)

tsne.poof ()

TSNE Projection of 448 Documents

L] @ °
L J [] ®
[o
“.‘5 .. . ® gaming
[] : @ cooking
P .- - cinema
o o° o] ° ® books
° o ln.ia-' sports
R > .', J'lr. ® e II..h ®
.k. .l .b
® -
. ¢ o ®

If we omit the target during fit, we can visualize the whole dataset to see if any meaningful patterns are observed.

Don't color points with their classes
tsne = TSNEVisualizer (labels=["documents"])
tsne.fit (docs)

tsne.poof ()

4.3. Gorsellestiriciler ve API 93

yellowbrick Documentation, Siiriim 0.5

TSNE Projection of 448 Documents

® documents

This means we don’t have to use class labels at all, instead we can use cluster membership from K-Means to label
each document, looking for clusters of related text by their contents:

Apply clustering instead of class names.
from sklearn.cluster import KMeans

clusters = KMeans (n_clusters=5)
clusters.fit (docs)

tsne = TSNEVisualizer ()
tsne.fit (docs, ["c{/)".format (c) for c in clusters.labels_])
tsne.poof ()

94 Bolim 4. icindekiler Tablosu

yellowbrick Documentation, Surim 0.5

TSNE Projection of 448 Documents

.. o]
o o .l::..'..' * o
a ® 000 G o
e a%» _° o 4°°8% '\. °
& 28 ® o

%
L
*om
-
e 99
, 559
P oY
&
®
%,
L
.t
2228R

* o'k‘l‘o.. J s?‘ .h.. ...:.. ¢ ¢
A B S L
L] S,
* “
. b

API Reference

Implements TSNE visualizations of documents in 2D space.

class yellowbrick.text.tsne.TSNEVisualizer (ax=None, decompose="svd’, decom-

pose_by=50, labels=None, classes=None,
colors=None, colormap=None, ran-

dom_state=None, **kwargs)
Bases: yellowbrick.text.base.TextVisualizer

Display a projection of a vectorized corpus in two dimensions using TSNE, a nonlinear dimensionality reduction
method that is particularly well suited to embedding in two or three dimensions for visualization as a scatter plot.
TSNE is widely used in text analysis to show clusters or groups of documents or utterances and their relative
proximities.

TSNE will return a scatter plot of the vectorized corpus, such that each point represents a document or utterance.
The distance between two points in the visual space is embedded using the probability distribution of pairwise
similarities in the higher dimensionality; thus TSNE shows clusters of similar documents and the relationships
between groups of documents as a scatter plot.

TSNE can be used with either clustering or classification; by specifying the classes argument, points will be
colored based on their similar traits. For example, by passing cluster.labels_asyin fit (), all points
in the same cluster will be grouped together. This extends the neighbor embedding with more information about
similarity, and can allow better interpretation of both clusters and classes.

For more, see https://lvdmaaten.github.io/tsne/

Parameters

4.3. Gorsellestiriciler ve API 95

https://lvdmaaten.github.io/tsne/

yellowbrick Documentation, Siiriim 0.5

ax [matplotlib axes] The axes to plot the figure on.

decompose [string or None, default: 'svd'] A preliminary decomposition is often used prior
to TSNE to make the projection faster. Specify "svd" for sparse data or "pca" for dense
data. If None, the original data set will be used.

decompose_by [int, default: 50] Specify the number of components for preliminary decompo-
sition, by default this is 50; the more components, the slower TSNE will be.

labels [list of strings] The names of the classes in the target, used to create a legend. Labels
must match names of classes in sorted order.

colors [list or tuple of colors] Specify the colors for each individual class
colormap [string or matplotlib cmap] Sequential colormap for continuous target

random_state [int, RandomState instance or None, optional, default: None] If int, ran-
dom_state is the seed used by the random number generator; If RandomState instance, ran-
dom_state is the random number generator; If None, the random number generator is the
RandomState instance used by np.random. The random state is applied to the preliminary
decomposition as well as tSNE.

kwargs [dict] Pass any additional keyword arguments to the TSNE transformer.
NULL_ CLASS = None

draw (points, target=None, **kwargs)
Called from the fit method, this method draws the TSNE scatter plot, from a set of decomposed points in
2 dimensions. This method also accepts a third dimension, target, which is used to specify the colors of
each of the points. If the target is not specified, then the points are plotted as a single cloud to show similar
documents.

finalize (**kwargs)
Finalize the drawing by adding a title and legend, and removing the axes objects that do not convey infor-
mation about TNSE.

fit (X, y=None, **kwargs)
The fit method is the primary drawing input for the TSNE projection since the visualization requires both
X and an optional y value. The fit method expects an array of numeric vectors, so text documents must be
vectorized before passing them to this method.

Parameters

X [ndarray or DataFrame of shape n x m] A matrix of n instances with m features represen-
ting the corpus of vectorized documents to visualize with tsne.

y [ndarray or Series of length n] An optional array or series of target or class values for
instances. If this is specified, then the points will be colored according to their class. Often
cluster labels are passed in to color the documents in cluster space, so this method is used
both for classification and clustering methods.

kwargs [dict] Pass generic arguments to the drawing method
Returns
self [instance] Returns the instance of the transformer/visualizer

make_transformer (decompose=’svd’, decompose_by=>50, tsne_kwargs={})
Creates an internal transformer pipeline to project the data set into 2D space using TSNE, applying an
pre-decomposition technique ahead of embedding if necessary. This method will reset the transformer on
the class, and can be used to explore different decompositions.

Parameters

96

Bolim 4. icindekiler Tablosu

yellowbrick Documentation, Siiriim 0.5

decompose [string or None, default: 'svd'] A preliminary decomposition is often used
prior to TSNE to make the projection faster. Specify "svd" for sparse data or "pca" for
dense data. If decompose is None, the original data set will be used.

decompose_by [int, default: 50] Specify the number of components for preliminary decom-
position, by default this is 50; the more components, the slower TSNE will be.

Returns

transformer [Pipeline] Pipelined transformer for TSNE projections

4.3.8 Renkler ve Stil

Yellowbrick believes that visual diagnostics are more effective if visualizations are appealing. As a result, we have
borrowed familiar styles from Seaborn and use the new Matplotlib 2.0 styles. We hope that these out of the box styles
will make your visualizations publication ready, though of course you can customize your own look and feel by directly
modifying the visualization with matplotlib.

Yellowbrick prioritizes color in its visualizations for most visualizers. There are two types of color sets that can be
provided to a visualizer: a palette and a sequence. Palettes are discrete color values usually of a fixed length and are
typically used for classification or clustering by showing each class, cluster or topic. Sequences are continuous color
values that do not have a fixed length but rather a range and are typically used for regression or clustering, showing all
possible values in the target or distances between items in clusters.

In order to make the distinction easy, most matplotlib colors (both palettes and sequences) can be referred to by name.
A complete listing can be imported as follows:

import matplotlib.pyplot as plt
from yellowbrick.style.palettes import PALETTES, SEQUENCES, color_palette

Palettes and sequences can be passed to visualizers as follows:

visualizer = Visualizer (color="bold")

Refer to the API listing of each visualizer for specifications about how each color argument is handled. In the next two
sections we will show every possible color palette and sequence currently available in Yellowbrick.

Renk Paletleri

Color palettes are discrete color lists that have a fixed length. The most common palettes are ordered as “blue”, “green”,

“red”, “maroon”, “yellow”, “cyan”, and an optional “key”. This allows you to specify these named colors or by the
first character, e.g. ‘bgrmyck’ for matplotlib visualizations.

To change the global color palette, use the set_palette function as follows:

from yellowbrick.style import set_palette
set_palette('flatui')

Color palettes are most often used for classifiers to show the relationship between discrete class labels. They can also
be used for clustering algorithms to show membership in discrete clusters.

A complete listing of the Yellowbrick color palettes can be visualized as follows:

['blue', 'green', 'red', 'maroon', 'yellow', 'cyan']
for palette in PALETTES.keys():
color_palette(palette) .plot ()
plt.title(palette, loc='left')

4.3. Gorsellestiriciler ve API 97

http://seaborn.pydata.org/tutorial/aesthetics.html
https://matplotlib.org/users/colormaps.html

yellowbrick Documentation, Siiriim 0.5

reset
pastel

colorblind

o
=
o

9

©

Bolim 4. icindekiler Tablosu

yellowbrick Documentation, Surim 0.5

sns_pastel

sns_deep

accent

sns_dark

dark
paired

sns_muted

4.3. Gorsellestiriciler ve API 99

yellowbrick Documentation, Siiriim 0.5

sns_colorblind

set1

vellowbrick

sns_bright

Color sequences are continuous representations of color and are usually defined as a fixed number of steps between
a minimum and maximal value. Sequences must be created with a total number of bins (or length) before plotting to
ensure that values are assigned correctly. In the listing below, each sequence is shown with varying lengths to describe
the range of colors in detail.

Renk Dizileri

Color sequences are most often used in regressions to show the distribution in the range of target values. They can also
be used in clustering and distribution analysis to show distance or histogram data.

Below is a complete listing of all the sequence names available in Yellowbrick:

for name, maps in SEQUENCES.items () :
for num, palette in maps.items():
color_palette(palette) .plot ()
plt.title("{} - {}".format (name, num), loc='left')

100 Bolim 4. icindekiler Tablosu

yellowbrick Documentation, Surim 0.5

Spectral - 3

Spectral - 4

Spectral - 6

Spectral - 7

Spectral - 8

Spectral - 9

4.3. Gorsellestiriciler ve API 101

Spectral - 5

yellowbrick Documentation, Siiriim 0.5

Spectral - 10

Spectral - 11

RdYlGn - 3

RdY1Gn -

RdYlGn - 5

RdYlGn - 6

RdYlGn - 7

102 Béliim 4. igindekiler Tablosu

yellowbrick Documentation, Surim 0.5

RdYlGn - 8

RdYIGn -9

RdYIGn - 10

RdYIGn - 11

OrRd - 3

OrRd - 4

OrRd - 5

4.3. Gorsellestiriciler ve API 103

yellowbrick Documentation, Siiriim 0.5

OrRd - 6
- N
OrRd -7
.
OrRd - 8
.
OrRd -9
- e
PuBu - 3
.
PuBu - 4
B
PuBu - 5

104 Bolim 4. icindekiler Tablosu

yellowbrick Documentation, Surim 0.5

PuBu -6
PuBu -7
- N

PuBu - 8
-

PuBu - 9
-

BuPu - 3

BuPu - 4

BuPu -5

4.3. Gorsellestiriciler ve API 105

yellowbrick Documentation, Siiriim 0.5

BuPu -6

-
BuPu -7

- N
BuPu - 8

S INE
BuPu -9
.

RdBu - 3

RdBu - 4

RdBu - 5

106 Bolim 4. icindekiler Tablosu

yellowbrick Documentation, Surim 0.5

RdBu - 6

RdBu -7

RdBu - 8

RdBu -9

RdBu - 10

RdBu - 11

Oranges - 3

4.3. Gorsellestiriciler ve API 107

yellowbrick Documentation, Siiriim 0.5

Oranges - 4
Oranges - 5
Oranges - 6

Oranges - 7

Oranges - 8

Oranges - 9

BuGn - 3

108 Bolim 4. icindekiler Tablosu

yellowbrick Documentation, Surim 0.5

BuGn - 4
B
BuGn -5
- Nl
BuGn - 6
- N
BuGn -7
- N
BuGn - 8
e
BuGn -9
.
PIYG -3

4.3. Gorsellestiriciler ve API 109

yellowbrick Documentation, Siiriim 0.5

PIiYG-10

110 Bo6liim 4. icindekiler Tablosu

yellowbrick Documentation, Surim 0.5

PIYG - 11
HE -
YI1OrBr - 3
-
Y1OrBr - 4
B
YIOrBr - 5
- Nl
Y1OrBr - 6
- N
YIOrBr - 7
- N
Y1OrBr - 8

4.3. Gorsellestiriciler ve API 111

yellowbrick Documentation, Siiriim 0.5

YIOrBr - 9
P
YIGn - 3
_
YIGn - 4
B
YIGn - 5
- Nl
YIGn - 6
- HE
YIGn -7
- N
YIGn - 8

112 Bolim 4. icindekiler Tablosu

yellowbrick Documentation, Surim 0.5

YIGn - 9
-
RdPu - 3
B
RdPu - 4
B
RdPu - 5
N |
RdPu - 6
. |
RdPu - 7
e
RdPu - 8

4.3. Gorsellestiriciler ve API 113

yellowbrick Documentation, Siiriim 0.5

RdPu -9

Greens - 3

Greens - 4

Greens - 5

Greens -6

Greens - 7

114 Bolim 4. icindekiler Tablosu

Greens - 8

yellowbrick Documentation, Surim 0.5

Greens - 9

PRGn -

PRGn -

PRGn -5

PRGn -

PRGn -

PRGN -8

4.3. Gorsellestiriciler ve API 115

yellowbrick Documentation, Siiriim 0.5

PRGn -9

PRGn - 10

PRGn - 11

YIGnBu -3

YIGnBu - 4

YIGnBu -5

YIGnBu - 6

116 Bo6liim 4. icindekiler Tablosu

yellowbrick Documentation, Surim 0.5

YIGnBu -7
YIGnBu - 8
YIGnBu -9

RdYIBu - 6

4.3. Gorsellestiriciler ve API 117

yellowbrick Documentation, Siiriim 0.5

RdYIBu - 7

RdYIBu - 8

RdYIBu - 9

RdYIBu - 10

RdYIBu - 11

BrBG - 3

BrBG - 4

118 Béliim 4. igindekiler Tablosu

yellowbrick Documentation, Surim 0.5

BrBG - 10

BrBG - 11

4.3. Gorsellestiriciler ve API 119

yellowbrick Documentation, Siiriim 0.5

Purples - 3

Purples - 4

Purples - 5

Purples - 6

Purples - 7

120 Bolim 4. icindekiler Tablosu

Purples - 8

Purples - 9

yellowbrick Documentation, Surim 0.5

Reds -3

Reds -4
Reds - 5
Reds -6

N
Reds - 7

e
Reds - 8

|

Reds -9

4.3. Gorsellestiriciler ve API 121

yellowbrick Documentation, Siiriim 0.5

ddl_heat - 12

GnBu - 3

GnBu - 4

GnBu -5

GnBu - 6

GnBu -7

122 B6liim 4. icindekiler Tablosu

GnBu - 8

yellowbrick Documentation, Surim 0.5

GnBu -9

Greys - 3

Greys - 4

Greys - 5

Greys -6

Greys - 7

4.3. Gorsellestiriciler ve API 123

Greys - 8

yellowbrick Documentation, Siiriim 0.5

Greys - 9

RdGy - 8

124 Bolim 4. icindekiler Tablosu

yellowbrick Documentation, Surim 0.5

RdGy - 9

RdGy - 10
Bl - Nl
RdGy - 11
BN - Nl
YIOrRd - 3

_
YIOrRd - 4

B
YIOrRd - 5

- Nl
YIOrRd - 6

4.3. Gorsellestiriciler ve API 125

yellowbrick Documentation, Siiriim 0.5

YIOrRd - 7
- N
YIOrRd - 8
.
YIOrRd - 9
.
PuOr -3

PuOr-4

PuOr -

PuOr-6

126 Bolim 4. icindekiler Tablosu

yellowbrick Documentation, Surim 0.5

PuOr-7

PuOr-8

PuOr-9

PuOr-10

PuQr-11

PuRd - 3

PuRd - 4

4.3. Gorsellestiriciler ve API 127

yellowbrick Documentation, Siiriim 0.5

PuRd - 5

- Nl
PuRd - 6

.
PuRd -7

.
PuRd - 8

- s
PuRd -9
- NEEE

Blues - 3

-
Blues - 4

128 Bolim 4. icindekiler Tablosu

yellowbrick Documentation, Surim 0.5

Blues - 5

Blues - 6

Blues - 7

Blues - 8

Blues - 9

PuBuGn - 3

PuBuGn - 4

4.3. Gorsellestiriciler ve API 129

yellowbrick Documentation, Siiriim 0.5

PuBuGn -5

PuBuGn -6

PuBuGn -7

Colors and color helpers brought in from an alternate library. See https://bl.ocks.org/mbostock/5577023

PuBuGn - 8

PuBuGn -9

API Referansi

yellowbrick.style.colors module

class yellowbrick.style.colors.ColoxrMap (colors=flatui’, shuffle=False)
Bases: object

A helper for mapping categorical values to colors on demand.
colors

yellowbrick.style.colors.get_color_cycle ()
Returns the current color cycle from matplotlib.

130 Bolim 4. icindekiler Tablosu

https://bl.ocks.org/mbostock/5577023
https://docs.python.org/3/library/functions.html#object

yellowbrick Documentation, Siiriim 0.5

yellowbrick.style.colors.resolve_colors (n_colors=None, colormap=None, colors=None)
Generates a list of colors based on common color arguments, for example the name of a colormap or palette or
another iterable of colors. The list is then truncated (or multiplied) to the specific number of requested colors.

Parameters

n_colors [int, default: None] Specify the length of the list of returned colors, which will eit-
her truncate or multiple the colors available. If None the length of the colors will not be
modified.

colormap [str, default: None] The name of the matplotlib color map with which to generate
colors.

colors [iterable, default: None] A collection of colors to use specifically with the plot.
Returns

colors [list] A list of colors that can be used in matplotlib plots.

Notes

This function was originally based on a similar function in the pandas plotting library that has been removed in
the new version of the library.

yellowbrick.style.palettes module

Implements the variety of colors that yellowbrick allows access to by name. This code was originally based on Se-
aborn’s rcmody.py but has since been cleaned up to be Yellowbrick-specific and to dereference tools we don’t use.
Note that these functions alter the matplotlib rc dictionary on the fly.

yvellowbrick.style.palettes.color_palette (palette=None, n_colors=None)
Return a color palette object with color definition and handling.

Calling this function with palette=None will return the current matplotlib color cycle.
This function can also be used in a with statement to temporarily set the color cycle for a plot or set of plots.
Parameters

palette [None or str or sequence] Name of a palette or None to return the current palette. If a
sequence the input colors are used but possibly cycled.

Available palette names from yellowbrick.colors.palettes are:

* accent

e dark

* paired

* pastel

* bold

* muted

* colorblind
* sns_colorblind
* sns_deep

* sns_muted
* sns_pastel
* sns_bright
* sns_dark

e flatui

4.3. Gorsellestiriciler ve API 131

yellowbrick Documentation, Siiriim 0.5

* neural_paint

n_colors [None or int] Number of colors in the palette. If None, the default will depend on
how palette is specified. Named palettes default to 6 colors which allow the use of the
names “bgrmyck”, though others do have more or less colors; therefore reducing the size of
the list can only be done by specifying this parameter. Asking for more colors than exist in
the palette will cause it to cycle.

Returns

list(tuple) Returns a ColorPalette object, which behaves like a list, but can be used as a context
manager and possesses functions to convert colors.

.. seealso::
set_palette () Setthe default color cycle for all plots.

set_color codes () Reassign color codes like "b", "g", etc. to colors from one of
the yellowbrick palettes.

colors.resolve_colors () Resolve a color map or listed sequence of colors.

yellowbrick.style.palettes.set_color_codes (palette="accent’)
Change how matplotlib color shorthands are interpreted.

Calling this will change how shorthand codes like “b” or “g” are interpreted by matplotlib in subsequent plots.
Parameters
palette [str] Named yellowbrick palette to use as the source of colors.

Ayrica bkz.:

set_palette Color codes can also be set through the function that sets the matplotlib color cycle.

yellowbrick.style.rcmod module

Modifies the matplotlib rcParams in order to make yellowbrick more appealing. This has been modified from Seaborn’s
rcmod.py: github.com/mwaskom/seaborn in order to alter the matplotlib rc dictionary on the fly.

NOTE: matplotlib 2.0 styles mean we can simply convert this to a stylesheet!

yellowbrick.style.rcmod.set_aesthetic (palette="yellowbrick’, font="sans-serif’,

font_scale=1, color_codes=True, rc=None)
Set aesthetic parameters in one step.

Each set of parameters can be set directly or temporarily, see the referenced functions below for more informa-
tion.

Parameters
palette [string or sequence] Color palette, see color_palette ()
font [string] Font family, see matplotlib font manager.

font_scale [float, optional] Separate scaling factor to independently scale the size of the font
elements.

color_codes [bool] If True and palette is a yellowbrick palette, remap the shorthand color

CLENTRT]

codes (e.g. “b”, “g”, “r”, etc.) to the colors from this palette.

rc [dict or None] Dictionary of rc parameter mappings to override the above.

132 Bolim 4. icindekiler Tablosu

yellowbrick Documentation, Siiriim 0.5

yellowbrick.style.rcmod.set_style (style=None, rc=None)
Set the aesthetic style of the plots.

This affects things like the color of the axes, whether a grid is enabled by default, and other aesthetic elements.
Parameters

style [dict, None, or one of {darkgrid, whitegrid, dark, white, ticks}] A dictionary of parameters
or the name of a preconfigured set.

rc [dict, optional] Parameter mappings to override the values in the preset seaborn style dicti-
onaries. This only updates parameters that are considered part of the style definition.

yellowbrick.style.rcmod.set_palette (palette, n_colors=None, color_codes=False)
Set the matplotlib color cycle using a seaborn palette.

Parameters

palette [yellowbrick color palette | seaborn color palette (with sns_ prepended)] Palette defi-
nition. Should be something that color_palette () can process.

n_colors [int] Number of colors in the cycle. The default number of colors will depend on the
format of palette, see the color_palette () documentation for more information.

color_codes [bool] If True and palette is a seaborn palette, remap the shorthand color

CLITSRE]

codes (e.g. “b”, “g”, “r”, etc.) to the colors from this palette.

yellowbrick.style.rcmod.reset_defaults ()
Restore all RC params to default settings.

yellowbrick.style.rcmod.reset_orig/()
Restore all RC params to original settings (respects custom rc).

Not: Many examples utilize data from the UCI Machine Learning repository, in order to run the examples, make sure
you follow the instructions in Ornek Veri Setleri to download and load required data.

A guide to finding the visualizer you’re looking for: generally speaking, visualizers can be data visualizers which
visualize instances relative to the model space; score visualizers which visualize model performance; model selection
visualizers which compare multiple model forms against each other; and application specific-visualizers. This can be
a bit confusing, so we’ve grouped visualizers according to the type of analysis they are well suited for.

Feature analysis visualizers are where you’ll find the primary implementation of data visualizers. Regression, classifi-
cation, and clustering analysis visualizers can be found in their respective libraries. Finally visualizers for text analysis
are also available in Yellowbrick! Other utilities like styles, best fit lines, and anscombe’s visualization can also be
found in the links above.

4.4 Kullanici Testi Talimatlari

We are looking for people to help us Alpha test the Yellowbrick project! Helping is simple: simply create a notebook
that applies the concepts in this Getting Started guide to a small-to-medium size dataset of your choice. Run through
the examples with the dataset, and try to change options and customize as much as possible. After you’ve exercised
the code with your examples, respond to our alpha testing survey!

4.4. Kullanici Testi Talimatlan 133

https://goo.gl/forms/naoPUMFa1xNcafY83

yellowbrick Documentation, Siiriim 0.5

4.4.1 Step One: Questionaire

Please open the quesionaire, in order to familiarize yourself with the feedback that we are looking to receive. We are
very interested in identifying any bugs in Yellowbrick. Please include al cells in your jupyter notebook that produce
errors so that we may reproduce the problem.

4.4.2 Step Two: Dataset

Select a multivariate dataset of your own; the more (e.g. different) datasets that we can run through Yellowbrick, the
more likely we’ll discover edge cases and exceptions! Note that your dataset must be well-suited to modeling with
Scikit-Learn. In particular we recommend you choose a dataset whose target is suited to the following supervised
learning tasks:

* Regression (target is a continuous variable)
* Classification (target is a discrete variable)

There are datasets that are well suited to both types of analysis; either way you can use the testing methodology from
this notebook for either type of task (or both). In order to find a dataset, we recommend you try the following places:

* UCI Machine Learning Repository
e MLData.org
* Awesome Public Datasets

You’re more than welcome to choose a dataset of your own, but we do ask that you make at least the notebook
containing your testing results publicly available for us to review. If the data is also public (or you’re willing to share
it with the primary contributors) that will help us figure out bugs and required features much more easily!

4.4.3 Step Three: Notebook

Create a notebook in a GitHub repository. We suggest the following:
1. Fork the Yellowbrick repository
2. Under the examples directory, create a directory named with your GitHub username
3. Create a notebook named testing, i.e. examplessfUSERNAME/testing.ipynb

Alternatively, you could just send us a notebook via Gist or your own repository. However, if you fork Yellowbrick,
you can initiate a pull request to have your example added to our gallery!

4.4.4 Step Four: Model with Yellowbrick and Scikit-Learn

Add the following to the notebook:

¢ A title in markdown

* A description of the dataset and where it was obtained

* A section that loads the data into a Pandas dataframe or NumPy matrix
Then conduct the following modeling activities:

* Feature analysis using Scikit-Learn and Yellowbrick

* Estimator fitting using Scikit-Learn and Yellowbrick

134 Bolim 4. icindekiler Tablosu

https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Classification_in_machine_learning
http://archive.ics.uci.edu/ml/
http://mldata.org/
https://github.com/caesar0301/awesome-public-datasets

yellowbrick Documentation, Siiriim 0.5

You can follow along with our examples directory (check out examples.ipynb) or even create your own custom
visualizers! The goal is that you create an end-to-end model from data loading to estimator(s) with visualizers along
the way.

IMPORTANT: please make sure you record all errors that you get and any tracebacks you receive for step three!

4.4.5 Step Five: Feedback

Finally, submit feedback via the Google Form we have created:
https://goo.gl/forms/naoPUMFalxNcafY83

This form is allowing us to aggregate multiple submissions and bugs so that we can coordinate the creation and
management of issues. If you are the first to report a bug or feature request, we will make sure you’re notified (we’ll
tag you using your Github username) about the created issue!

4.4.6 Step Six: Thanks!

Thank you for helping us make Yellowbrick better! We’d love to see pull requests for features you think would be
extend the library. We’ll also be doing a user study that we would love for you to participate in. Stay tuned for more
great things from Yellowbrick!

4.5 Katkida Bulunun

Yellowbrick is an open source project that is supported by a community who will gratefully and humbly accept any
contributions you might make to the project. Large or small, any contribution makes a big difference; and if you’'ve
never contributed to an open source project before, we hope you will start with Yellowbrick!

Principally, Yellowbrick development is about the addition and creation of visualizers — objects that learn from data
and create a visual representation of the data or model. Visualizers integrate with scikit-learn estimators, transformers,
and pipelines for specific purposes and as a result, can be simple to build and deploy. The most common contribution
is a new visualizer for a specific model or model family. We’ll discuss in detail how to build visualizers later.

Beyond creating visualizers, there are many ways to contribute:
* Submit a bug report or feature request on GitHub Issues.
 Contribute an Jupyter notebook to our examples gallery.
 Assist us with user testing.
* Add to the documentation or help with our website, scikit-yb.org
* Write unit or integration tests for our project.
* Answer questions on our issues, mailing list, Stack Overflow, and elsewhere.
¢ Translate our documentation into another language.
* Write a blog post, tweet, or share our project with others.
» Teach someone how to use Yellowbrick.

As you can see, there are lots of ways to get involved and we would be very happy for you to join us! The only thing
we ask is that you abide by the principles of openness, respect, and consideration of others as described in the Python
Software Foundation Code of Conduct.

4.5. Katkida Bulunun 135

https://github.com/DistrictDataLabs/yellowbrick/blob/master/examples/examples.ipynb
https://goo.gl/forms/naoPUMFa1xNcafY83
https://github.com/DistrictDataLabs/yellowbrick/issues
https://github.com/DistrictDataLabs/yellowbrick/tree/develop/examples
http://www.scikit-yb.org/en/latest/evaluation.html
http://www.scikit-yb.org
https://www.python.org/psf/codeofconduct/
https://www.python.org/psf/codeofconduct/

yellowbrick Documentation, Siiriim 0.5

4.5.1 Getting Started on GitHub

Yellowbrick is hosted on GitHub at https://github.com/DistrictDatalabs/yellowbrick.
The typical workflow for a contributor to the codebase is as follows:
1. Discover a bug or a feature by using Yellowbrick.
Discuss with the core contributors by adding an issue.
Assign yourself the task by pulling a card from our Waffle Kanban
Fork the repository into your own GitHub account.
Create a Pull Request first thing to connect with us about your task.
Code the feature, write the tests and documentation, add your contribution.

Review the code with core contributors who will guide you to a high quality submission.

® Nk » N

Merge your contribution into the Yellowbrick codebase.

Not: Please create a pull request as soon as possible, even before you’ve started coding. This will allow the core contri-
butors to give you advice about where to add your code or utilities and discuss other style choices and implementation
details as you go. Don’t wait!

We believe that contribution is collaboration and therefore emphasize communication throughout the open source
process. We rely heavily on GitHub’s social coding tools to allow us to do this.

Forking the Repository
The first step is to fork the repository into your own account. This will create a copy of the codebase that you can edit
and write to. Do so by clicking the “fork” button in the upper right corner of the Yellowbrick GitHub page.
Once forked, use the following steps to get your development environment set up on your computer:
1. Clone the repository.

After clicking the fork button, you should be redirected to the GitHub page of the repository in your
user account. You can then clone a copy of the code to your local machine.:

$ git clone https://github.com/[YOURUSERNAME] /yellowbrick
$ cd yellowbrick

2. Create a virtual environment.

Yellowbrick developers typically use virtualenv (and virtualenvwrapper), pyenv or conda envs in
order to manage their Python version and dependencies. Using the virtual environment tool of your
choice, create one for Yellowbrick. Here’s how with virtualenv:

$ virtualenv venv

3. Install dependencies.

Yellowbrick’s dependencies are in the requirements.txt document at the root of the reposi-
tory. Open this file and uncomment the dependencies that are for development only. Then install the
dependencies with pip:

$ pip install -r requirements.txt

136 Bo6liim 4. icindekiler Tablosu

https://github.com/DistrictDataLabs/yellowbrick
https://github.com/DistrictDataLabs/yellowbrick/issues
https://waffle.io/DistrictDataLabs/yellowbrick
https://github.com/DistrictDataLabs/yellowbrick/pulls
https://virtualenv.pypa.io/en/stable/
https://virtualenvwrapper.readthedocs.io/en/latest/
https://github.com/pyenv/pyenv-virtualenv
https://conda.io/docs/using/envs.html

yellowbrick Documentation, Siiriim 0.5

Note that there may be other dependencies required for development and testing; you can simply
install them with pip. For example to install the additional dependencies for building the documen-
tation or to run the test suite, use the requirements. txt files in those directories:

$ pip install -r tests/requirements.txt
$ pip install -r docs/requirements.txt

4. Switch to the develop branch.

The Yellowbrick repository has a develop branch that is the primary working branch for contribu-
tions. It is probably already the branch you’re on, but you can make sure and switch to it as follows:

$ git fetch
$ git checkout develop

At this point you’re ready to get started writing code. If you’re going to take on a specific task, we’d strongly encourage
you to check out the issue on Waffle and create a pull request before you start coding to better foster communication
with other contributors. More on this in the next section.

Pull Requests

A pull request (PR) is a GitHub tool for initiating an exchange of code and creating a communication channel for
Yellowbrick maintainers to discuss your contribution. In essenence, you are requesting that the maintainers merge
code from your forked repository into the develop branch of the primary Yellowbrick repository. Once completed,
your code will be part of Yellowbrick!

When starting a Yellowbrick contribution, open the pull request as soon as possible. We use your PR issue page to
discuss your intentions and to give guidance and direction. Every time you push a commit into your forked repository,
the commit is automatically included with your pull request, therefore we can review as you code. The earlier you
open a PR, the more easily we can incorporate your updates, we’d hate for you to do a ton of work only to discover
someone else already did it or that you went in the wrong direction and need to refactor.

Not: For a great example of a pull request for a new feature visualizer, check out this one by Carlo Morales.

When you open a pull request, ensure it is from your forked repository to the develop branch of git-
hub.com/districtdatalabs/yellowbrick; we will not merge a PR into the master branch. Title your Pull Request so
that it is easy to understand what you’re working on at a glance. Also be sure to include a reference to the issue that
you’re working on so that correct references are set up.

After you open a PR, you should get a message from one of the maintainers. Use that time to discuss your idea and
where best to implement your work. Feel free to go back and forth as you are developing with questions in the comment
thread of the PR. Once you are ready, please ensure that you explicitly ping the maintainer to do a code review. Before
code review, your PR should contain the following:

1. Your code contribution

2. Tests for your contribution

3. Documentation for your contribution

4. A PR comment describing the changes you made and how to use them
5. A PR comment that includes an image/example of your visualizer

At this point your code will be formally reviewed by one of the contributors. We use GitHub’s code review tool,
starting a new code review and adding comments to specific lines of code as well as general global comments. Please
respond to the comments promptly, and don’t be afraid to ask for help implementing any requested changes! You may
have to go back and forth a couple of times to complete the code review.

4.5. Katkida Bulunun 137

https://waffle.io/DistrictDataLabs/yellowbrick
https://github.com/DistrictDataLabs/yellowbrick/pulls
https://help.github.com/articles/about-pull-requests/
https://github.com/DistrictDataLabs/yellowbrick/pull/232
https://github.com/cjmorale
https://github.com/districtdatalabs/yellowbrick
https://github.com/districtdatalabs/yellowbrick

yellowbrick Documentation, Siiriim 0.5

When the following is true:
1. Code is reviewed by at least one maintainer
2. Continuous Integration tests have passed
3. Code coverage and quality have not decreased
4. Code is up to date with the yellowbrick develop branch

Then we will “Squash and Merge” your contribution, combining all of your commits into a single commit and merging
it into the develop branch of Yellowbrick. Congratulations! Once your contribution has been merged into master, you
will be officially listed as a contributor.

4.5.2 Developing Visualizers

In this section, we’ll discuss the basics of developing visualizers. This of course is a big topic, but hopefully these
simple tips and tricks will help make sense. First thing though, check out this presentation that we put together on
yellowbrick development, it discusses the expected user workflow, our integration with scikit-learn, our plans and
roadmap, etc:

One thing that is necessary is a good understanding of scikit-learn and Matplotlib. Because our API is intended to
integrate with scikit-learn, a good start is to review “APIs of scikit-learn objects” and “rolling your own estimator”.
In terms of matplotlib, use Yellowbrick’s guide Efektif Matplotlib. Additional resources include Nicolas P. Rougier’s
Matplotlib tutorial and Chris Moffitt’s Effectively Using Matplotlib.

Visualizer API

There are two basic types of Visualizers:
* Feature Visualizers are high dimensional data visualizations that are essentially transformers.

* Score Visualizers wrap a scikit-learn regressor, classifier, or clusterer and visualize the behavior or performance
of the model on test data.

These two basic types of visualizers map well to the two basic objects in scikit-learn:
* Transformers take input data and return a new data set.
» Estimators are fit to training data and can make predictions.

The scikit-learn API is object oriented, and estimators and transformers are initialized with parameters by instantiating
their class. Hyperparameters can also be set using the set_attrs () method and retrieved with the corresponding
get_attrs () method. All scikit-learn estimators have a fit (X, y=None) method that accepts a two dimensi-
onal data array, X, and optionally a vector y of target values. The £it () method trains the estimator, making it ready
to transform data or make predictions. Transformers have an associated t ransform (X) method that returns a new
dataset, Xprime and models have a predict (X) method that returns a vector of predictions, yhat. Models also
have a score (X, y) method that evaluate the performance of the model.

Visualizers interact with scikit-learn objects by intersecting with them at the methods defined above. Specifically,
visualizers perform actions related to £it (), transform(), predict (), and score () then call a draw ()
method which initializes the underlying figure associated with the visualizer. The user calls the visualizer’s poof ()
method, which in turn calls a finalize () method on the visualizer to draw legends, titles, etc. and then poof ()
renders the figure. The Visualizer API is therefore:

e draw () : add visual elements to the underlying axes object
e finalize (): prepare the figure for rendering, adding final touches such as legends, titles, axis labels, etc.

e poof ():render the figure for the user (or saves it to disk).

138 Bo6liim 4. icindekiler Tablosu

http://scikit-learn.org/stable/developers/contributing.html#apis-of-scikit-learn-objects
http://scikit-learn.org/stable/developers/contributing.html#rolling-your-own-estimator
https://www.labri.fr/perso/nrougier/teaching/matplotlib/
https://www.labri.fr/perso/nrougier/teaching/matplotlib/
http://pbpython.com/effective-matplotlib.html

yellowbrick Documentation, Siiriim 0.5

Creating a visualizer means defining a class that extends Visualizer or one of its subclasses, then implementing
several of the methods described above. A barebones implementation is as follows:

import matplotlib.pyplot as plot
from yellowbrick.base import Visualizer
class MyVisualizer (Visualizer):

def _ init__ (self, ax=None, +**kwargs):
super (MyVisualizer, self).__init__ (ax, =*+xkwargs)

def fit(self, X, y=None):
self.draw (X)
return self

def draw(self, X):
if self.ax is None:
self.ax = self.gcal)

self.ax.plot (X)

def finalize(self):
self.set_title("My Visualizer")

This simple visualizer simply draws a line graph for some input dataset X, intersecting with the scikit-learn API at the
fit () method. A user would use this visualizer in the typical style:

visualizer = MyVisualizer ()
visualizer.fit (X)
visualizer.poof ()

Score visualizers work on the same principle but accept an additional required model argument. Score visualizers
wrap the model (which can be either instantiated or uninstantiated) and then pass through all attributes and methods
through to the underlying model, drawing where necessary.

Testing

The test package mirrors the yellowbrick package in structure and also contains several helper methods and base
functionality. To add a test to your visualizer, find the corresponding file to add the test case, or create a new test file
in the same place you added your code.

Visual tests are notoriously difficult to create — how do you test a visualization or figure? Moreover, testing scikit-
learn models with real data can consume a lot of memory. Therefore the primary test you should create is simply to
test your visualizer from end to end and make sure that no exceptions occur. To assist with this, we have two primary
helpers, VisualTestCase and DatasetMixin. Create your unittest as follows:

import pytest
from tests.base import VisualTestCase
from tests.dataset import DatasetMixin

class MyVisualizerTests (VisualTestCase, DatasetMixin):
def test_my_visualizer (self):

mmwn

Test MyVisualizer on a real dataset

(continues on next page)

4.5. Katkida Bulunun 139

yellowbrick Documentation, Siiriim 0.5

(onceki sayfadan devam)

moon

Load the data from the fixture
dataset = self.load_data('occupancy')

Get the data
X = dataset[[
"temperature", "relative_humidity", "light", "C02", "humidity"

]
y = dataset['occupancy'].astype (int)

visualizer = MyVisualizer ()
visualizer.fit (X)
visualizer.poof ()
except Exception as e:
pytest.fail ("my visualizer didn't work™)

Tests can be run as follows:

S make test

The Makefile uses the pytest runner and testing suite as well as the coverage library, so make sure you have those
dependencies installed! The DatasetMixin also requires requests.py to fetch data from our Amazon S3 account.

Image Comparison Tests

Writing an image based comparison test is only a little more difficult than the simple testcase presented
above. We have adapted matplotlib’s image comparison test utility into an easy to use assert method: self.
assert_images_similar (visualizer)

The main consideration is that you must specify the “baseline”, or expected, image in the tests/
baseline_images/ folder structure.

For example, create your unittest located in tests/test_regressor/test_myvisualizer.py as follows:

from tests.base import VisualTestCase
def test_my_visualizer_output (self):

visualizer = MyVisualizer ()
visualizer.fit (X)

visualizer.poof ()
self.assert_images_similar (visualizer)

The first time this test is run, there will be no baseline image to compare against, so the test will fail.
Copy the output images (in this case tests/actual_images/test_regressor/test_myvisualizer/
test_my_visualizer_output.png) to the correct subdirectory of baseline_images tree in the so-
urce directory (in this case tests/baseline_images/test_regressor/test_myvisualizer/
test_my_visualizer_output.png). Put this new file under source code revision control (with git add). When
rerunning the tests, they should now pass.

We also have a helper script, tests/images.py to clean up and manage baseline images automatically. It is run
using the python -m command to execute a module as main, and it takes as an argument the path to your test file.
To copy the figures as above:

140 Bolim 4. icindekiler Tablosu

http://docs.python-requests.org/en/master/

yellowbrick Documentation, Siiriim 0.5

$ python -m tests.images tests/test_regressor/test_myvisualizer.py

This will move all related test images from actual_images to baseline_images on your behalf (note you’ll
have had to run the tests at least once to generate the images). You can also clean up images from both actual and
baseline as follows:

$ python -m tests.images -C tests/test_regressor/test_myvisualizer.py

This is useful particularly if you’re stuck trying to get an image comparison to work. For more information on the
images helper script, use python -m tests.images —-help.

Documentation

The initial documentation for your visualizer will be a well structured docstring. Yellowbrick uses Sphinx to build
documentation, therefore docstrings should be written in reStructuredText in numpydoc format (similar to scikit-
learn). The primary location of your docstring should be right under the class definition, here is an example:

class MyVisualizer (Visualizer):
mmwn
This initial section should describe the visualizer and what
it's about, including how to use it. Take as many paragraphs
as needed to get as much detail as possible.

In the next section describe the parameters to __init__.

Parameters

model : a scikit-learn regressor
Should be an instance of a regressor, and specifically one whose name
ends with "CV" otherwise a will raise a YellowbrickTypeError exception
on instantiation. To use non-CV regressors see:
' "ManualAlphaSelection

ax : matplotlib Axes, default: None
The axes to plot the figure on. If None 1is passed in the current axes
will be used (or generated if required).

kwargs : dict
Keyword arguments that are passed to the base class and may influence
the visualization as defined in other Visualizers.

Examples

>>> model = MyVisualizer/()
>>> model.fit (X)
>>> model.poof ()

In the notes section specify any gotchas or other info.
mmwn

When your visualizer is added to the API section of the documentation, this docstring will be rendered in HTML to

4.5. Katkida Bulunun 141

yellowbrick Documentation, Siiriim 0.5

show the various options and functionality of your visualizer!

To add the visualizer to the documentation it needs to be added to the docs/api folder in the correct subdirec-
tory. For example if your visualizer is a model score visualizer related to regression it would go in the docs/api/
regressor subdirectory. If you have a question where your documentation should be located, please ask the main-
tainers via your pull request, we’d be happy to help!

There are two primary files that need to be created:
1. mymodule.rst: the reStructuredText document
2. mymodule.py: a python file that generates images for the rst document

There are quite a few examples in the documentation on which you can base your files of similar types. The primary
format for the API section is as follows:

—%— mode: rst —x-—

My Visualizer

Intro to my visualizer
code:: python

Example to run MyVisualizer
visualizer = MyVisualizer (LinearRegression())

visualizer.fit (X, vy)

g = visualizer.poof ()

image:: images/my_visualizer.png

Discussion about my visualizer

API Reference

automodule:: yellowbrick.regressor.mymodule
:members: MyVisualizer
:undoc-members:
:show-inheritance:

This is a pretty good structure for a documentation page; a brief introduction followed by a code example with a visu-
alization included (using the mymodule . py to generate the images into the local directory’s images subdirectory).
The primary section is wrapped up with a discussion about how to interpret the visualizer and use it in practice. Finally
the API Reference section will use aut omodule to include the documentation from your docstring.

At this point there are several places where you can list your visualizer, but to ensure it is included in the documentation
it must be listed in the TOC of the local index. Find the index . rst file in your subdirectory and add your rst file
(without the . rst extension) to the . .toctree: : directive. This will ensure the documentation is included when
it is built.

Speaking of, you can build your documentation by changing into the docs directory and running make html, the
documentation will be built and rendered in the _build/html directory. You can view it by opening _build/
html/index.html then navigating to your documentation in the browser.

There are several other places that you can list your visualizer including:

142 Bolim 4. icindekiler Tablosu

yellowbrick Documentation, Siiriim 0.5

* docs/index. rst for a high level overview of our visualizers
* DESCRIPTION. rst for inclusion on PyPI
e README . md for inclusion on GitHub

Please ask for the maintainer’s advice about how to include your visualizer in these pages.

4.5.3 Advanced Development

In this section we discuss more advanced contributing guidelines including setting up branches for development as
well as the release cycle. This section is intended for maintainers and core contributors of the Yellowbrick project. If
you would like to be a maintainer please contact one of the current maintainers of the project.

Branching Convention

The Yellowbrick repository is set up in a typical production/release/development cycle as described in “A Successful
Git Branching Model.” The primary working branch is the develop branch. This should be the branch that you are
working on and from, since this has all the latest code. The master branch contains the latest stable version and
release, which is pushed to PyPI. No one but core contributors will generally push to master.

Not: All pull requests should be into the yellowbrick/develop branch from your forked repository.

You can work directly in your fork and create a pull request from your fork’s develop branch into ours. We also
recommend setting up an upst ream remote so that you can easily pull the latest development changes from the main
Yellowbrick repository (see configuring a remote for a fork). You can do that as follows:

$ git remote add upstream https://github.com/DistrictDatalabs/yellowbrick.git
$ git remote -v

origin https://github.com/YOUR_USERNAME/YOUR_FORK.git (fetch)

origin https://github.com/YOUR_USERNAME/YOUR_FORK.git (push)

upstream https://github.com/DistrictDatalabs/yellowbrick.git (fetch)
upstream https://github.com/DistrictDatalabs/yellowbrick.git (push)

When you’re ready, request a code review for your pull request. Then, when reviewed and approved, you can merge
your fork into our main branch. Make sure to use the “Squash and Merge” option in order to create a Git history that
is understandable.

Not: When merging a pull request, use the “squash and merge” option.

Core contributors have write access to the repository. In order to reduce the number of merges (and merge conflicts)
we recommend that you utilize a feature branch off of develop to do intermediate work in:

$ git checkout -b feature-myfeature develop

Once you are done working (and everything is tested) merge your feature into develop.:

$ git checkout develop

$ git merge —--no-ff feature-myfeature
$ git branch -d feature-myfeature

$ git push origin develop

Head back to Waffle and checkout another issue!

4.5. Katkida Bulunun 143

http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/
https://github.com/DistrictDataLabs/yellowbrick/releases
https://pypi.python.org/pypi/yellowbrick
https://help.github.com/articles/configuring-a-remote-for-a-fork/

yellowbrick Documentation, Siiriim 0.5

Releases

When ready to create a new release we branch off of develop as follows:

$ git checkout -b release-x.x

This creates a release branch for version x.x. At this point do the version bump by modifying version.py and the
test version in tests/__init__ .py. Make sure all tests pass for the release and that the documentation is up to
date. There may be style changes or deployment options that have to be done at this phase in the release branch. At
this phase you’ll also modify the changelog with the features and changes in the release.

Once the release is ready for prime-time, merge into master:

$ git checkout master
$ git merge —--no-ff --no-edit release-x.x

Tag the release in GitHub:

$ git tag -a vx.x
$ git push origin vx.x

You’ll have to go to the release page to edit the release with similar information as added to the changelog. Once done,
push the release to PyPI:

$ make build
$ make deploy

Check that the PyPI page is updated with the correct version and that pip install -U yellowbrick updates
the version and works correctly. Also check the documentation on PyHosted, ReadTheDocs, and on our website to
make sure that it was correctly updated. Finally merge the release into develop and clean up:

$ git checkout develop
$ git merge —--no-ff --no-edit release-x.x
$ git branch -d release-x.x

Hotfixes and minor releases also follow a similar pattern; the goal is to effectively get new code to users as soon as
possible!

4.6 Efektif Matplotlib

Yellowbrick generates visualizations by wrapping matplotlib, the most prominent Python scientific visualization lib-
rary. Because of this, Yellowbrick is able to generate publication-ready images for a variety of GUI backends, image
formats, and Jupyter notebooks. Yellowbrick strives to provide well-styled visual diagnostic tools and complete in-
formation. However, to customize figures or roll your own visualizers, a strong background in using matplotlib is
required.

With permission, we have included part of Chris Moffitt’s Effectively Using Matplotlib as a crash course into Matplot-
lib terminology and usage. For a complete example, please visit his excellent post on creating a visual sales analysis!
Additionally we recommend Nicolas P. Rougier’s Matplotlib tutorial for an in-depth dive.

4.6.1 Figures and Axes

This graphic from the matplotlib faq is gold. Keep it handy to understand the different terminology of a plot.

144 Bolim 4. icindekiler Tablosu

https://github.com/DistrictDataLabs/yellowbrick/releases
http://matplotlib.org/
https://github.com/chris1610
http://pbpython.com/effective-matplotlib.html
https://www.labri.fr/perso/nrougier/teaching/matplotlib/
https://matplotlib.org/faq/usage_faq.html

yellowbrick Documentation, Siiriim 0.5

@ Ana‘uy of a figure

Title

Major tick

D

Minor tick

C

Major tick label

— B} 3l
— Re& i

i
I
|
I
! Legend
I
I
I
I

Line
T © (line plot)
S_— o] ° o
E ° ¢ 00 ©°
T e e e o T = — e — T —— —— — —]
| o © o ° © o | = 0%
e | OEGD ED © ° ci‘u-p
. rfo
¥ axis label © Ooi o o S Markers
0 © (scatter plot)
| e °© o & |
| o 00
1- |
o
&\théihf_ Co
= |
O 4 Q :@ Spines
Figure Line T

]

|

I

I

]

I

]

]

|

|

. Axes (line plot) i
i :
i

3

I
0 T T i T T T | T T T
0 0.2 .75 1 1.25 1.50 1~ 2 2.25 2.50 2.75
5 label
Mineor tick label

Made with http:fmatplotlib.org
X axis label

Most of the terms are straightforward but the main thing to remember is that the Figure is the final image that may
contain 1 or more axes. The Axes represent an individual plot. Once you understand what these are and how to access
them through the object oriented API, the rest of the process starts to fall into place.

The other benefit of this knowledge is that you have a starting point when you see things on the web. If you take the
time to understand this point, the rest of the matplotlib API will start to make sense.

Matplotlib keeps a global reference to the global figure and axes objects which can be modified by the pyplot APL
To access this import matplotlib as follows:

import matplotlib.pyplot as plt

axes = plt.gca()

The plt.gca () function gets the current axes so that you can draw on it directly. You can also directly create a
figure and axes as follows:

fig = plt.figure()
ax = fig.add_subplot (111)

Yellowbrick will use p1t.gca () by default to draw on. You can access the Axes object on a visualizer via its ax

4.6. Efektif Matplotlib 145

yellowbrick Documentation, Siiriim 0.5

property:

from sklearn.linear model import LinearRegression
from yellowbrick.regressor import PredictionError

Fit the visualizer

model = PredictionError (LinearRegression ())
model.fit (X_train, y_train)

model.score (X_test, y_test)

Call finalize to draw the final yellowbrick-specific elements
model.finalize ()

Get access to the axes object and modify labels
model.ax.set_xlabel ("measured concrete strength")
model.ax.set_ylabel ("predicted concrete strength")
plt.savefig("peplot.pdf")

You can also pass an external Axes object directly to the visualizer:

model = PredictionError (LinearRegression(), ax=ax)

Therefore you have complete control of the style and customization of a Yellowbrick visualizer.

4.6.2 Creating a Custom Plot

matplotlib customization example
fig, (ax0, ax1) = plt.subplots(nrows=1,ncols=2, sharey=True, figsize=(7, 4))

fig.suptitle('2014 Sales Analysis', fontsize=14, fontweight='bold')

top_10.plot(kind='barh', y="Sales", top_10.plot(kind="barh', y="Purchases",
x="Name", ax=ax@) x="Name", ax=ax1)
2014 Sales Analysis
Revenue Units
ax1.axvline(x=avg, color='b',
I label="Average',
— linestyle='--',
linewidth=1)
I
0000 100000 0 © & 8@
Total Revenue Total Units
ax0.set_x1im([-10000, 140000])
ax0.set(title='Revenue', xlabel='Total axl.set(title='Units',
Revenue', ylabel='Customers') xlabel='Total Units', ylabel='")

fig.savefig('sales.png', transparent=False, dpi=80, bbox_inches="tight")

pbpython.com

The first step with any visualization is to plot the data. Often the simplest way to do this is using the standard pandas
plotting function (given a DataFrame called top_10):

top_10.plot (kind='"barh', y="Sales", x="Name")

The reason I recommend using pandas plotting first is that it is a quick and easy way to prototype your visualization.
Since most people are probably already doing some level of data manipulation/analysis in pandas as a first step, go
ahead and use the basic plots to get started.

Assuming you are comfortable with the gist of this plot, the next step is to customize it. Some of the customizations
(like adding titles and labels) are very simple to use with the pandas plot function. However, you will probably find
yourself needing to move outside of that functionality at some point. That’s why it is recommended to create your own
Axes first and pass it to the plotting function in Pandas:

146 Bolim 4. icindekiler Tablosu

yellowbrick Documentation, Siiriim 0.5

fig, ax = plt.subplots()
top_10.plot (kind="barh', y="Sales", x="Name", ax=ax)

The resulting plot looks exactly the same as the original but we added an additional call to p1t . subplots () and
passed the ax to the plotting function. Why should you do this? Remember when I said it is critical to get access to
the axes and figures in matplotlib? That’s what we have accomplished here. Any future customization will be done via
the ax or £ig objects.

We have the benefit of a quick plot from pandas but access to all the power from matplotlib now. An example should
show what we can do now. Also, by using this naming convention, it is fairly straightforward to adapt others’ solutions
to your unique needs.

Suppose we want to tweak the x limits and change some axis labels? Now that we have the axes in the ax variable, we
have a lot of control:

fig, ax = plt.subplots()

top_10.plot (kind="barh', y="Sales", x="Name", ax=ax)
ax.set_x1im([-10000, 1400007])

ax.set_xlabel ('Total Revenue')

ax.set_ylabel ('Customer');

Here’s another shortcut we can use to change the title and both labels:

fig, ax = plt.subplots|()

top_10.plot (kind="barh', y="Sales", x="Name", ax=ax)
ax.set_x1im([-10000, 1400007)

ax.set (title='2014 Revenue', xlabel='Total Revenue', ylabel='Customer')

To further demonstrate this approach, we can also adjust the size of this image. By using the plt . subplots ()
function, we can define the figsize in inches. We can also remove the legend using ax.legend() .
set_visible (False):

fig, ax = plt.subplots(figsize=(5, 6))

top_10.plot (kind="barh', y="Sales", x="Name", ax=ax)
ax.set_x1im([-10000, 1400001)

ax.set (title='2014 Revenue', xlabel='Total Revenue')
ax.legend () .set_visible (False)

There are plenty of things you probably want to do to clean up this plot. One of the biggest eye sores is the formatting
of the Total Revenue numbers. Matplotlib can help us with this through the use of the FuncFormatter . This
versatile function can apply a user defined function to a value and return a nicely formatted string to place on the axis.

Here is a currency formatting function to gracefully handle US dollars in the several hundred thousand dollar range:

def currency(x, pos):

mmon

The two args are the value and tick position
mrmmn
if x >= 1000000:
return 'S M'.format (x+1e—6)
return 'S K'.format (x+le—-3)

Now that we have a formatter function, we need to define it and apply it to the x axis. Here is the full code:

fig, ax = plt.subplots()
top_10.plot (kind="barh', y="Sales", x="Name", ax=ax)
ax.set_x1im([-10000, 1400007)

(continues on next page)

4.6. Efektif Matplotlib 147

yellowbrick Documentation, Siiriim 0.5

(onceki sayfadan devam)

ax.set (title='2014 Revenue', xlabel='Total Revenue', ylabel='Customer')
formatter = FuncFormatter (currency)

ax.xaxlis.set_major_formatter (formatter)

ax.legend() .set_visible (False)

That’s much nicer and shows a good example of the flexibility to define your own solution to the problem.

The final customization feature I will go through is the ability to add annotations to the plot. In order to draw a vertical
line, you can use ax .axvline () and to add custom text, you can use ax.text ().

For this example, we’ll draw a line showing an average and include labels showing three new customers. Here is the
full code with comments to pull it all together.

Create the figure and the axes
fig, ax = plt.subplots/()

Plot the data and get the average
top_10.plot (kind="barh', y="Sales", x="Name", ax=ax)
avg = top_1l0['Sales'].mean()

Set limits and labels
ax.set_x1im([-10000, 1400007)
ax.set (title='2014 Revenue', xlabel='Total Revenue', ylabel='Customer')

Add a line for the average
ax.axvline (x=avg, color='b', label='Average',6 linestyle='—--"', linewidth=1)

Annotate the new customers
for cust in [3, 5, 8]:
ax.text (115000, cust, "New Customer")

Format the currency
formatter = FuncFormatter (currency)
ax.xaxis.set_major_formatter (formatter)

Hide the legend
ax.legend() .set_visible (False)

148 Bolim 4. icindekiler Tablosu

yellowbrick Documentation, Surim 0.5

2014 Revenue

Keeling LLC -

Frami, Hills and Schmidt - Mew Customer
Koepp Lid -
Will LLC -
Barton LLC - Mew Customer

Fritsch, Russel and Anderson -

Customer

Jerde-Hilpert - Mew Customer
Trantow-Barrows -
White-Trantow -

Kulas Inc -

220K SA0K So0K 0K S100K s120K sl40K
Total Revenue

=
=

While this may not be the most exciting plot it does show how much power you have when following this approach.

Up until now, all the changes we have made have been with the individual plot. Fortunately, we also have the ability
to add multiple plots on a figure as well as save the entire figure using various options.

If we decided that we wanted to put two plots on the same figure, we should have a basic understanding of how to do
it. First, create the figure, then the axes, then plot it all together. We can accomplish this using p1t . subplots ():

fig, (ax0, axl) = plt.subplots(nrows=1, ncols=2, sharey=True, figsize=(7, 4))

In this example, I'm using nrows and ncols to specify the size because this is very clear to the new user. In sample
code you will frequently just see variables like 1,2. I think using the named parameters is a little easier to interpret
later on when you’re looking at your code.

I am also using sharey=True so that the y-axis will share the same labels.

This example is also kind of nifty because the various axes get unpacked to ax0 and ax1. Now that we have these
axes, you can plot them like the examples above but put one plot on ax0 and the other on ax1.

Get the figure and the axes

fig, (ax0, axl) = plt.subplots(nrows=1,ncols=2, sharey=True, figsize=(7, 4))
top_10.plot (kind="barh', y="Sales", x="Name", ax=ax0)

ax0.set_x1im([-10000, 1400001])

ax0.set (title="'Revenue', xlabel='Total Revenue', ylabel='Customers')

Plot the average as a vertical line
avg = top_1l0['Sales'].mean()
ax0.axvline (x=avg, color='b', label='Average', linestyle='--', linewidth=1)

Repeat for the unit plot

top_10.plot (kind="barh', y="Purchases", x="Name", ax=axl)

avg = top_10['Purchases'].mean ()

axl.set (title='Units', xlabel='Total Units', ylabel='")

axl.axvline (x=avg, color='b', label='Average', linestyle='--', linewidth=1)

Title the figure

(continues on next page)

4.6. Efektif Matplotlib 149

yellowbrick Documentation, Siiriim 0.5

(onceki sayfadan devam)

fig.suptitle('2014 Sales Analysis', fontsize=14, fontweight='bold'");

Hide the legends
axl.legend() .set_visible (False)
ax0.legend() .set_visible (False)

When writing code in a Jupyter notebook you can take advantage of the $matplotlib inline or
$matplotlib notebook directives to render figures inline. More often, however, you probably want to save
your images to disk. Matplotlib supports many different formats for saving files. You can use fig.canvas.
get_supported_filetypes () to see what your system supports:

fig.canvas.get_supported_filetypes|()

{'eps': 'Encapsulated Postscript',
'"Jpeg': 'Joint Photographic Experts Group',
'Jpg': '"Joint Photographic Experts Group',
'pdf': 'Portable Document Format',
'pgf': '"PGF code for LaTeX',
'png': 'Portable Network Graphics',
'ps': 'Postscript',
'raw': 'Raw RGBA bitmap',
'rgba': 'Raw RGBA bitmap',
'svg': 'Scalable Vector Graphics',
'svgz': 'Scalable Vector Graphics',
'tif': 'Tagged Image File Format',
'tiff': 'Tagged Image File Format'}

Since we have the fig object, we can save the figure using multiple options:

fig.savefig('sales.png', transparent=False, dpi=80, bbox_inches="tight")

This version saves the plot as a png with opaque background. I have also specified the dpi and bbox_inches="tight” in
order to minimize excess white space.

150 Bo6liim 4. icindekiler Tablosu

yellowbrick Documentation, Surim 0.5

4.7 Hakkinda

Resim sahibi QuatroCinco, izniyle kullanilmistir, Flickr Creative Commons.

Yellowbrick, gorsel analiz ve tanimlama araclart ile birlikte Scikit-Learn API ‘yi genisleten ac¢ik kaynak kodlu sade bir
Python Projesidir. Yellowbrick API, Matplotlib’i de kapsayarak yaymlamaya hazir figiir ve interaktif veri kesfi olus-
turmay1 saglarken bir yandan da gelistiricilere ayrintili figiir kontrolu imkan1 saglamaktadir. Yellowbrick kullanicilar
icin; Makine dgrenimi modellerinin performansini gelistirme, giivenirliligini saglama, deger tahmininde bulunma ve
makine ogrenmesi is akisinda karsilasilan problemleri teshis etmede yardimer olabilmektedir.

Son donemlerde makine 6grenimi is akiginin bityiik bir kismi; grid search yontemi, standartlagtirtlmis API ler ve GUI
tabanli uygulamalar yoluyla otomatize edilmistir. Bununla birlikte, pratikte insan sezgisi ve rehberligi, kaliteli mo-
deller iizerinde detayli arama yontemlerine gore daha efektif odaklanma saglamaktadir. Gorsel model se¢im islemi
yoluyla, veri bilimcileri; hatalara ve yanilgilara diismeden finale, aciklanabilir modellere dogru ilerleyis gosterebil-
mektedir.

Yellowbrick kiitiiphanesi, makine 6grenimi icin veri bilimcilerine model secim siirecine yon vermelerine olanak sag-
layan bir tan1 gorsellestirme platformudur. Yellowbrick, Scikit Learn API‘sini yeni bir temel obje ile genisletmisgtir:
Gorsellestirici. Gorsellestiriciler, ¢ok boyutlu verilerin doniisiimii sirasinda gorsel tanilar sunarak, Scikit-Learn islem
siirecinin bir pargasi olarak gorsel modellerin uymasini ve doniigiimiinii saglamaktadir.

4.7.1 Model Secimi

Makine 6grenimi tartigmalart sik stk model se¢imi {izerine tekil odaklanma ile karakterize edilir. Gerek lojistik regres-
yon, karar agaclari, Bayesian methodlar1 veya yapay sinir aglari olsun; makine 6grenmesi uygulayicilari tercihlerini

4.7. Hakkinda 151

https://flic.kr/p/2Yj9mj
http://scikit-learn.org/stable/modules/classes.html

yellowbrick Documentation, Siiriim 0.5

genellikle hizli bir sekilde aciklarlar. Bunun nedeni ¢cogunlukla tarihseldir. Modern ticiincii parti makine dgrenimi
kiitiiphaneleri bircok modelin yayilmasini 6nemsiz olarak gosterse de, geleneksel olarak bu algoritmalardan birinin
bile uygulamasi ve ayarlanmasi yillar siiren caligma gerektirmistir. Sonu¢ olarak makine 6grenmesi uygulayicilar
digerlerine gore daha belirgin (ve muhtemelen daha yaygin olan) algoritmalar1 daha cok tercih etmeye yonelmistir.

Bununla birlikte, model se¢imi basit sekilde “dogru” ya da “yanlig” algoritmayr se¢gmekten biraz daha ntianshdir.
Pratik olarak ig akis1 sunlari icermektedir:

1. en kii¢iik ve en kestirici tahmin kiimesi secimi ya da olusturumu
2. bir dizi algoritmalarin bir model ailesinden se¢imi ve
3. performans optimizesi i¢in algoritma hiperparametlerinin ayarlanmasi

Kumar et al tarafindan model secim iicliisii 2015 yil1 SIGMOD makalesinde ilk defa tanimlanmigtir. Makale igeri-
sinde, tahmin edici modelleme 6ngoriisii i¢in ingaa edilen yeni nesil veritabani sistemlerinin gelisimiyle ilgili olarak,
makale yazarlan pratikte makine 6greniminin biiyiik ol¢iide deneysel yapisi sebebiyle bu tiir sistemlere ¢ok fazla ih-
tiya¢ oldugunu ifade ederler. “Model secimini,” su sekilde agiklarlar, “tekrarlayici ve kesifseldir ¢iinkii [model se¢im
ticliisii] alan1 genellikle sonsuzdur ve analizgiler i¢in yeterli dogruluk ve kavrayis saglayabilecek bir olas1 [kombinas-
yon] bilmek genelde imkansizdir.”

4.7.2 isim Koékeni

Yellowbrick Paketi, Amerikan yazar L. Frank Baum tarafindan 1900 yilinda yazilan ¢ocuk roman1 The Wonderful
Wizard of Oz (Oz Biiyiiciisii) igerisinde gegen kurgusal bir elementten adin1 almistir. Kitapta, Roman kahramani Do-
rothy Gale, Emerald Sehri‘ndeki hedefine ulagabilmesi i¢in sar1 tuglali yolu (yellowbrick) takip etmesi gerekmektedir.

Wikipedia ‘da su sekilde gecmektedir: “Bu yol ilk olarak Oz Biiyiiciisii‘niin tigiincii boliimiinde tanitilmigtir. Yol,
Oz Diyari‘nin dogu ¢eyreginin kalbinde bulunan Munchkin iilkesinden baslamaktadir. Bu yol; takip eden her-
kese,en son varig yeri —kitanin tam ortasinda bulunan Oz emparyel bagkenti olan Emerald sehrine kadar reh-
berlik etmektir. Kitapta, romanin ana karakteri Dorothy, biiyiiciiyii aramaya baglamadan 6nce bu yolu bulmasi
gerekmektedir. Bunun sebebi ¢esitli film adaptasyonlarinda gosterilenin aksine, Kansas‘ta ¢ikan hortumun ¢ift-
lik evini bu yola yakin biryerde birakmamasidir. Munchkins yerlileriyle ve onlarin sevilen dostu Kuzey’in iyi
kalpli cadist ile yapilan konsey sonrasinda, Dorothy bu yolu aramaya baglar ve yakinlarinda bircok patikalar ve
yollar1 goriir, (Herbiri cesitli yonlere gitmekte). Neyseki parlak sar1 tuglalarla kaplanmis yolu bulmasi ¢ok uzun
stirmez.”

4.7.3 Yellowbrick EKkibi

Yellowbrick acik kaynaga inanan veri bilimcileri tarafindan gelistirilmis ve tiim diinyadan Python gelistiricilerinin pro-
jeye katkilart memnuniyet vermistir. Proje @rebeccabilbro ve @bbengfort tarafindan makine 6grenmesi kavramlarini
ogrencilerine daha iyi agiklamak amaciyla baglatilmis olup; bununla birlikte gorsel yonlendirme potansiyelinin pratik
veri bilimi iizerinde bilyiik bir etkiye sebep olabilecegini ve bunu yiiksek diizey Python kiitiiphanesiyle gerceklestire-
bileceklerini ¢ok ¢abuk farkettiler.

Yellowbrick, ig birligine ve acik kaynak gelisimine hizmet eden bir organizasyon olan District Data Labs tarafindan
tiretilmistir. District Data Labs’1n bir parcasi olan Yellowbrick, ilk olarak PyCon 2016 da konugmalarda ve gelistirme
sprintlerinde Python topluluguna tanigtirilmistir. Daha sonra bu proje, DDL Aragtirma Laboratuvarlar:1 (DDL toplulugu
tiyelerinin ¢esitli veri projeleri ile katkida bulundugu Somestir - Uzun Sprintler) ile siirdiiriilmiistiir.

4.7.4 Lisans

Yellowbrick agik kaynakli bir projedir ve lisanst FOSS Apache 2.0 uygulamast olup Apache Software Foundation
lisansli bir uygulamasidir. Sade bir dil ile ifade etmek istersek Yellowbrick’i ticari amacli kullanabilir, kaynak kodu

152 Bo6liim 4. icindekiler Tablosu

http://cseweb.ucsd.edu/~arunkk/vision/SIGMODRecord15.pdf
https://en.wikipedia.org/wiki/Yellow_brick_road
https://github.com/rebeccabilbro
https://github.com/bbengfort
http://www.districtdatalabs.com/
https://youtu.be/c5DaaGZWQqY
https://github.com/DistrictDataLabs/yellowbrick/blob/master/LICENSE.txt
http://www.apache.org/licenses/LICENSE-2.0
https://tldrlegal.com/license/apache-license-2.0-(apache-2.0)

yellowbrick Documentation, Siiriim 0.5

degistirilebilir ve paylasabilirsiniz, hatta alt lisans edinebilirsiniz. Bizler Yellowbrick’i kullanmanizi, yararlanmanizi
ve Yellowbrick’le ilgili giizel seyler yaparsaniz geri katkida bulunmaniz isteriz.

Bununla birlikte sizden talep ettgimiz birkag gereksinim bulunmakta. Oncelikle Yellowbrick kaynak kodunu dagitir-
ken veya paylasirken yazilim depomuzun dizininde bulunan ve icerisinde telif hakkimiz ve lisansimizin bulundugu
LICENSE.txt dosyasini liitfen dahil edin. Ek olarak projemiz igerisinde “NOTICE” dosyas1 olusturmugsak ayrica bu
dosyay1 da kaynak paylasim dosyaniza eklemeniz gerekmektedir. “NOTICE” dosyasi bu projeye emek vermis kisilere
yonelik atiflarin ve tesekkiirlerin bulundugu bir dosya olacaktir. Son olarak yazilimimizi kullaniminiza yonelik hig-
bir sekilde District Data Labs veya Yellowbrick’e katkida bulunan kisileri sorumlu olarak tutamazsiniz ve yine ayni
sekilde isimlerimizi, logolarimizi, markamizi mesul tutamazsiniz.

Bu gereksinimlerin adil olduguna diisiiniiyoruz ve agik kaynaga gercekten inaniyoruz. Eger yazilimimiz iizerinde
degisiklik yaparsaniz, ticari veya akademide kullanin ya da bagka bir ilginiz varsa, bunu duymaktan memnun oluruz.

4.7.5 Sunumlar
Yellowbrick, birka¢ konferans ve sergilerde yer almaktan memnun olmustur. Sundugumuz videolar,konugmalar ve
sunumlarin Yellowbrick‘i daha iyi anlamaniza yardimci olacagina inaniyoruz.
Videolar:
* Visual Diagnostics for More Informed Machine Learning: Within and Beyond Scikit-Learn (PyCon 2016)
* Visual Diagnostics for More Informed Machine Learning (PyData Carolinas 2016)
* Yellowbrick: Steering Machine Learning with Visual Transformers (PyData London 2017)
Slaytlar:
e Visualizing the Model Selection Process
¢ Visualizing Model Selection with Scikit-Yellowbrick

* Visual Pipelines for Text Analysis (Data Intelligence 2017)

4.8 Degisiklik Kayitlari

4.8.1 Version 0.5

e Tag: v0.5
* Deployed: Wednesday, August 9, 2017

* Contributors: Benjamin Bengfort, Rebecca Bilbro, Nathan Danielsen, Carlo Morales, Jim Stearns, Phillip Scha-
fer, Jason Keung

Changes:
¢ Added VisualTestCase.

* New PCADecomposition Visualizer, which decomposes high dimensional data into two or three dimensi-
ons so that each instance can be plotted in a scatter plot.

* New and improved ROCAUC Visualizer, which now supports multiclass classification.

* Prototype Decision Boundary Visualizer, which is a bivariate data visualization algorithm that plots the
decision boundaries of each class.

* Added Rank1D Visualizer, which is a one dimensional ranking of features that utilizes the Shapiro-Wilks
ranking that takes into account only a single feature at a time (e.g. histogram analysis).

4.8. Degisiklik Kayitlar 153

https://github.com/DistrictDataLabs/yellowbrick/blob/master/LICENSE.txt
https://youtu.be/c5DaaGZWQqY
https://youtu.be/cgtNPx7fJUM
https://youtu.be/2ZKng7pCB5k
https://www.slideshare.net/BenjaminBengfort/visualizing-the-model-selection-process
https://www.slideshare.net/BenjaminBengfort/visualizing-model-selection-with-scikityellowbrick-an-introduction-to-developing-visualizers
https://speakerdeck.com/dataintelligence/visual-pipelines-for-text-analysis
https://github.com/DistrictDataLabs/yellowbrick/releases/tag/v0.5

yellowbrick Documentation, Siiriim 0.5

* Improved Prediction Error Plot with identity line, shared limits, and r squared.
» Updated FreqDist Visualizer to make word features a hyperparameter.
* Added normalization and scaling to Parallel Coordinates.

* Added Learning Curve Visualizer, which displays a learning curve based on the number of samples versus
the training and cross validation scores to show how a model learns and improves with experience.

* Added data downloader module to the yellowbrick library.

» Complete overhaul of the yellowbrick documentation; categories of methods are located in separate pages
to make it easier to read and contribute to the documentation.

* Added a new color palette inspired by ANN-generated colors
Bug Fixes:
* Repairs to PCA, RadViz, FreqDist unit tests

* Repair to matplotlib version check in JointPlot Visualizer

4.8.2 Hotfix 0.4.2

Update to the deployment docs and package on both Anaconda and PyPI.
e Tag: v0.4.2
* Deployed: Monday, May 22, 2017

* Contributors: Benjamin Bengfort, Jason Keung

4.8.3 Version 0.4.1

This release is an intermediate version bump in anticipation of the PyCon 2017 sprints.

The primary goals of this version were to (1) update the Yellowbrick dependencies (2) enhance the Yellowbrick
documentation to help orient new users and contributors, and (3) make several small additions and upgrades (e.g.
pulling the Yellowbrick utils into a standalone module).

We have updated the Scikit-Learn and SciPy dependencies from version 0.17.1 or later to 0.18 or later. This pri-
marily entails moving from from sklearn.cross_validation import train_test_split to from
sklearn.model_selection import train_test_split.

The updates to the documentation include new Quickstart and Installation guides as well as updates to the Contributors
documentation, which is modeled on the Scikit-Learn contributing documentation.

This version also included upgrades to the KMeans visualizer, which now supports not only silhouette_score
but also distortion_score and calinski_harabaz_score. The distortion_score computes the
mean distortion of all samples as the sum of the squared distances between each observation and its closest centroid.
This is the metric that K-Means attempts to minimize as it is fitting the model. The calinski_harabaz_score
is defined as ratio between the within-cluster dispersion and the between-cluster dispersion.

Finally, this release includes a prototype of the VisualPipeline, which extends Scikit-Learn’s Pipeline class,
allowing multiple Visualizers to be chained or sequenced together.

e Tag: v0.4.1
* Deployed: Monday, May 22, 2017
 Contributors: Benjamin Bengfort, Rebecca Bilbro, Nathan Danielsen

Changes:

154 Bolim 4. icindekiler Tablosu

http://lewisandquark.tumblr.com/
https://github.com/DistrictDataLabs/yellowbrick/releases/tag/v0.4.2
https://github.com/DistrictDataLabs/yellowbrick/releases/tag/v0.4.1

yellowbrick Documentation, Siiriim 0.5

* Score and model visualizers now wrap estimators as proxies so that all methods on the estimator can be
directly accessed from the visualizer

» Updated Scikit-learn dependency from >=0.17.1 to >=0.18
* Replaced sklearn.cross_validation withmodel_selection
» Updated SciPy dependency from >=0.17.1 to >=0.18

¢ ScoreVisualizer now subclasses Model Visualizer; towards allowing both fitted and unfitted models passed
to Visualizers

¢ Added CI tests for Python 3.6 compatibility
* Added new quickstart guide and install instructions
» Updates to the contributors documentation

* Added distortion_score and calinski_harabaz_score computations and visualizations to
KMeans visualizer.

* Replaced the self.ax property on all of the individual draw methods with a new property on the
Visualizer class that ensures all visualizers automatically have axes.

* Refactored the utils module into a package
» Continuing to update the docstrings to conform to Sphinx

* Added a prototype visual pipeline class that extends the Scikit-learn pipeline class to ensure that visualizers
get called correctly.

Bug Fixes:
¢ Fixed title bug in Rank2D FeatureVisualizer

4.8.4 Version 0.4

This release is the culmination of the Spring 2017 DDL Research Labs that focused on developing Yellowbrick as a
community effort guided by a sprint/agile workflow. We added several more visualizers, did a lot of user testing and
bug fixes, updated the documentation, and generally discovered how best to make Yellowbrick a friendly project to
contribute to.

Notable in this release is the inclusion of two new feature visualizers that use few, simple dimensions to visualize
features against the target. The JointPlotVisualizer graphs a scatter plot of two dimensions in the data set and
plots a best fit line across it. The ScatterVisualizer also uses two features, but also colors the graph by the
target variable, adding a third dimension to the visualization.

This release also adds support for clustering visualizations, namely the elbow method for selecting K,
KElbowVisualizer and a visualization of cluster size and density using the SilhouetteVisualizer. The
release also adds support for regularization analysis using the AlphaSelection visualizer. Both the text and classi-
fication modules were also improved with the inclusion of the PosTagVisualizer and the ConfusionMatrix
visualizer respectively.

This release also added an Anaconda repository and distribution so that users can conda install yellowbrick.
Even more notable, we got yellowbrick stickers! We’ve also updated the documentation to make it more friendly and
a bit more visual; fixing the API rendering errors. All-in-all, this was a big release with a lot of contributions and we
thank everyone that participated in the lab!

e Tag: v0.4
* Deployed: Thursday, May 4, 2017

4.8. Degisiklik Kayitlar 155

https://github.com/DistrictDataLabs/yellowbrick/releases/tag/v0.4

yellowbrick Documentation, Siiriim 0.5

* Contributors: Benjamin Bengfort, Rebecca Bilbro, Nathan Danielsen, Matt Andersen, Prema Roman, Neal
Humphrey, Jason Keung, Bala Venkatesan, Paul Witt, Morgan Mendis, Tuuli Morril

Changes:
e Part of speech tags visualizer - PosTagVisualizer.
* Alpha selection visualizer for regularized regression — AlphaSelection
» Confusion Matrix Visualizer — ConfusionMatrix
» Elbow method for selecting K vis - KElbowVisualizer
« Silhouette score cluster visualization — SilhouetteVisualizer
¢ Joint plot visualizer with best fit — JointPlotVisualizer
e Scatter visualization of features — ScatterVisualizer
¢ Added three more example datasets: mushroom, game, and bike share
 Contributor’s documentation and style guide
¢ Maintainers listing and contacts
 Light/Dark background color selection utility
e Structured array detection utility
» Updated classification report to use colormesh
¢ Added anacondas packaging and distribution
* Refactoring of the regression, cluster, and classification modules
* Image based testing methodology
* Docstrings updated to a uniform style and rendering

¢ Submission of several more user studies

4.8.5 Version 0.3.3

Intermediate sprint to demonstrate prototype implementations of text visualizers for NLP models. Primary contributi-
ons were the FregDistVisualizer and the TSNEVisualizer.

The TSNEVisualizer displays a projection of a vectorized corpus in two dimensions using TSNE, a nonlinear
dimensionality reduction method that is particularly well suited to embedding in two or three dimensions for visuali-
zation as a scatter plot. TSNE is widely used in text analysis to show clusters or groups of documents or utterances
and their relative proximities.

The FregDistVisualizer implements frequency distribution plot that tells us the frequency of each vocabulary
item in the text. In general, it could count any kind of observable event. It is a distribution because it tells us how the
total number of word tokens in the text are distributed across the vocabulary items.

e Tag: v0.3.3
* Deployed: Wednesday, February 22, 2017
* Contributors: Rebecca Bilbro, Benjamin Bengfort
Changes:
* TSNEVisualizer for 2D projections of vectorized documents

* FregDistVisualizer for token frequency of text in a corpus

156 Bolim 4. icindekiler Tablosu

https://github.com/DistrictDataLabs/yellowbrick/releases/tag/v0.3.3

yellowbrick Documentation, Siiriim 0.5

Added the user testing evaluation to the documentation
Created scikit-yb.org and host documentation there with RFD
Created a sample corpus and text examples notebook
Created a base class for text, TextVisualizer

Model selection tutorial using Mushroom Dataset

Created a text examples notebook but have not added to documentation.

4.8.6 Version 0.3.2

Hardened the Yellowbrick API to elevate the idea of a Visualizer to a first principle. This included reconciling shifts in
the development of the preliminary versions to the new API, formalizing Visualizer methods like draw() and finalize(),
and adding utilities that revolve around Scikit-Learn. To that end we also performed administrative tasks like refreshing
the documentation and preparing the repository for more and varied open source contributions.

e Tag: v0.3.2

* Deployed: Friday, January 20, 2017

* Contributors: Benjamin Bengfort, Rebecca Bilbro

Changes:

L]
[

Converted Mkdocs documentation to Sphinx documentation

Updated docstrings for all Visualizers and functions

Created a DataVisualizer base class for dataset visualization

Single call functions for simple visualizer interaction

Added yellowbrick specific color sequences and palettes and env handling
More robust examples with downloader from DDL host

Better axes handling in visualizer, matplotlib/sklearn integration

Added a finalize method to complete drawing before render

Improved testing on real data sets from examples

Bugfix: score visualizer renders in notebook but not in Python scripts.

Bugfix: tests updated to support new API

4.8.7 Hotfix 0.3.1

Hotfix to solve pip install issues with Yellowbrick.
e Tag: v0.3.1
* Deployed: Monday, October 10, 2016

* Contributors: Benjamin Bengfort

Changes:

— Modified packaging and wheel for Python 2.7 and 3.5 compatibility
— Modified deployment to PyPI and pip install ability

— Fixed Travis-CI tests with the backend failures.

4.8. Degisiklik Kayitlar 157

https://github.com/DistrictDataLabs/yellowbrick/releases/tag/v0.3.2
https://github.com/DistrictDataLabs/yellowbrick/releases/tag/v0.3.1a2

yellowbrick Documentation, Siiriim 0.5

4.8.8 Version 0.3

This release marks a major change from the previous MVP releases as Yellowbrick moves towards direct integration
with Scikit-Learn for visual diagnostics and steering of machine learning and could therefore be considered the first
alpha release of the library. To that end we have created a Visualizer model which extends sklearn.base.BaseEstimator
and can be used directly in the ML Pipeline. There are a number of visualizers that can be used throughout the model
selection process, including for feature analysis, model selection, and hyperparameter tuning.

In this release specifically we focused on visualizers in the data space for feature analysis and visualizers in the model
space for scoring and evaluating models. Future releases will extend these base classes and add more functionality.

e Tag: v0.3
* Deployed: Sunday, October 9, 2016
 Contributors: Benjamin Bengfort, Rebecca Bilbro, Marius van Niekerk
Enhancements:
— Created an API for visualization with machine learning: Visualizers that are BaseEstimators.

— Created a class hierarchy for Visualizers throughout the ML process particularly feature analysis and
model evaluation

— Visualizer interface is draw method which can be called multiple times on data or model spaces and a
poof method to finalize the figure and display or save to disk.

— ScoreVisualizers wrap Scikit-Learn estimators and implement fit and predict (pass-throughs to the
estimator) and also score which calls draw in order to visually score the estimator. If the estimator
isn’t appropriate for the scoring method an exception is raised.

— ROCAUC is a ScoreVisualizer that plots the receiver operating characteristic curve and displays the
area under the curve score.

— ClassificationReport is a ScoreVisualizer that renders the confusion matrix of a classifier as a heatmap.

— PredictionError is a ScoreVisualizer that plots the actual vs. predicted values and the 45 degree accu-
racy line for regressors.

— ResidualPlot is a ScoreVisualizer that plots the residuals (y - yhat) across the actual values (y) with
the zero accuracy line for both train and test sets.

— ClassBalance is a ScoreVisualizer that displays the support for each class as a bar plot.

— FeatureVisualizers are Scikit-Learn Transformers that implement fit and transform and operate on the
data space, calling draw to display instances.

— ParallelCoordinates plots instances with class across each feature dimension as line segments across
a horizontal space.

— RadViz plots instances with class in a circular space where each feature dimension is an arc around
the circumference and points are plotted relative to the weight of the feature.

— Rank2D plots pairwise scores of features as a heatmap in the space [-1, 1] to show relative importance
of features. Currently implemented ranking functions are Pearson correlation and covariance.

— Coordinated and added palettes in the bgrmyck space and implemented a version of the Seaborn
set_palette and set_color_codes functions as well as the ColorPalette object and other matplotlib.rc
modifications.

— Inherited Seaborn’s notebook context and whitegrid axes style but make them the default, don’t allow
user to modify (if they’d like to, they’ll have to import Seaborn). This gives Yellowbrick a consistent
look and feel without giving too much work to the user and prepares us for Matplotlib 2.0.

158 Bolim 4. icindekiler Tablosu

https://github.com/DistrictDataLabs/yellowbrick/releases/tag/v0.3

yellowbrick Documentation, Siiriim 0.5

— Jupyter Notebook with Examples of all Visualizers and usage.
Bug Fixes:

— Fixed Travis-CI test failures with matplotlib.use(‘Agg’).

— Fixed broken link to Quickstart on README

— Refactor of the original API to the Scikit-Learn Visualizer API

4.8.9 Version 0.2

Intermediate steps towards a complete API for visualization. Preparatory stages for Scikit-Learn visual pipelines.
e Tag: v0.2
* Deployed: Sunday, September 4, 2016
* Contributors: Benjamin Bengfort, Rebecca Bilbro, Patrick O’Melveny, Ellen Lowy, Laura Lorenz
Changes:
— Continued attempts to fix the Travis-CI Scipy install failure (broken tests)
— Utility function: get the name of the model
— Specified a class based API and the basic interface (render, draw, fit, predict, score)

— Added more documentation, converted to Sphinx, autodoc, docstrings for viz methods, and a quicks-
tart

— How to contribute documentation, repo images etc.
— Prediction error plot for regressors (mvp)

— Residuals plot for regressors (mvp)

— Basic style settings a la seaborn

— ROC/AUC plot for classifiers (mvp)

— Best fit functions for “select best”, linear, quadratic

— Several Jupyter notebooks for examples and demonstrations

4.8.10 Version 0.1

Created the yellowbrick library MVP with two primary operations: a classification report heat map and a ROC/AUC
curve model analysis for classifiers. This is the base package deployment for continuing yellowbrick development.

e Tag: v0O.1
* Deployed: Wednesday, May 18, 2016
* Contributors: Benjamin Bengfort, Rebecca Bilbro

Changes:

Created the Anscombe quartet visualization example

Added DDL specific color maps and a stub for more style handling

Created crplot which visualizes the confusion matrix of a classifier

Created rocplot_compare which compares two classifiers using ROC/AUC metrics

4.8. Degisiklik Kayitlar 159

https://github.com/DistrictDataLabs/yellowbrick/releases/tag/v0.2
https://github.com/DistrictDataLabs/yellowbrick/releases/tag/v0.1

yellowbrick Documentation, Siiriim 0.5

— Stub tests/stub documentation

160 Bolim 4. icindekiler Tablosu

BOLUM D

Dizinler ve Tablolar

* genindex

¢ modindex

161

yellowbrick Documentation, Siiriim 0.5

162 Bolim 5. Dizinler ve Tablolar

Python Modul Dizini

y

yellowbrick.
yellowbrick.

79

yellowbrick.

71

yellowbrick.

73

yellowbrick.
yellowbrick.
yellowbrick.
yellowbrick.
yellowbrick.
yellowbrick.
yellowbrick.
yellowbrick.
yellowbrick.
yellowbrick.
yellowbrick.
yellowbrick.
yellowbrick.
yellowbrick.
yellowbrick.
yellowbrick.
yellowbrick.
yellowbrick.

anscombe, 33
classifier.

classifier.
classifier.

classifier.
classifier.

class_balance,

classification_report,

confusion_matrix,

rocauc, 76
threshold, 81

cluster.elbow, 82
cluster.silhouette, 85
features.importances, 52
features. jointplot, 57
features.pca, 47
features.pcoords, 44
features.radviz, 35
features.rankd, 40
features.scatter, 56
regressor.alphas, 67

regressor.residuals, 61
style.colors, 130
style.palettes, 131
style.rcmod, 132
text.freqgdist, 91
text.tsne, 95

163

yellowbrick Documentation, Siiriim 0.5

164 Python Modiil Dizini

Dizin

A

AlphaSelection (yellowbrick.regressor.alphas icinde bir
sinif), 67
anscombe() (yellowbrick.anscombe modiilii i¢inde), 33

C

ClassBalance (yellowbrick.classifier.class_balance icinde
bir sinif), 79

ClassificationReport (yellowb-
rick.classifier.classification_report icinde
bir sinif), 71

color_palette() (yellowbrick.style.palettes modiilii

icinde), 131
ColorMap (yellowbrick.style.colors i¢inde bir sinif), 130
colors (yellowbrick.style.colors.ColorMap niteligi), 130

ConfusionMatrix (yellowb-
rick.classifier.confusion_matrix ~ icinde bir
sinif), 73

count() (yellowbrick.text.freqdist.FrequencyVisualizer
metodu), 92

D

draw() (yellowbrick.classifier.class_balance.ClassBalance
metodu), 79

draw() (yellowbrick.features.pca.PCADecomposition
metodu), 48

draw() (yellowbrick.features.pcoords.ParallelCoordinates
metodu), 45

draw() (yellowbrick.features.radviz.Radial Visualizer me-
todu), 36

draw() (yellowbrick.features.rankd.Rank 1D metodu), 41

draw() (yellowbrick.features.rankd.Rank2D metodu), 42

draw() (yellowbrick.features.scatter.ScatterVisualizer me-
todu), 57

draw() (yellowbrick.regressor.alphas.AlphaSelection me-
todu), 68

draw() (yellowbrick.regressor.alphas.Manual AlphaSelection

metodu), 69

draw() (yellowbrick.regressor.residuals.PredictionError
metodu), 65

draw() (yellowbrick.regressor.residuals.ResidualsPlot
metodu), 62

draw() (yellowbrick.text.freqdist.Frequency Visualizer
metodu), 92

draw() (yellowbrick.text.tsne. TSNEVisualizer metodu),
96

draw_joint() (yellowbrick.features.jointplot.JointPlotVisualizer

metodu), 59

draw_xy() (yellowbrick.features.jointplot.JointPlotVisualizer

draw() (yellowbrick.classiﬁer.classiﬁcation_report.ClassiﬁcationKepo%etodu) 59

metodu), 72

draw() (yellowbrick.classifier.confusion_matrix.ConfusionMatrix

metodu), 74

draw() (yellowbrick.classifier.rocauc. ROCAUC metodu),
77

draw() (yellowbrick.cluster.elbow.KEIbow Visualizer me-
todu), 83

draw() (yellowbrick.cluster.silhouette.Silhouette Visualizer

metodu), 85

draw() (yellowbrick.features.importances.Featurelmportanc

metodu), 53
draw() (yellowbrick.features.jointplot.JointPlotVisualizer
metodu), 59

FeatureImportances (yellowbrick.features.importances
icinde bir sinif), 52

finalize() (yellowbrick.classifier.class_balance.ClassBalance

metodu), 80
finalize() (yellowbrick.classifier.classification_report.ClassificationReport
metodu), 72
finalize() (yellowbrick.classifier.confusion_matrix.ConfusionMatrix
s metodu), 74
finalize() (yellowbrick.classifier.rocauc.ROCAUC me-
todu), 77
finalize() (yellowbrick.cluster.elbow.KElbow Visualizer
metodu), 83

165

yellowbrick Documentation, Siiriim 0.5

finalize() (yellowbrick.cluster.silhouette.Silhouette Visualizer

bir siif), 57

KElbow Visualizer (yellowbrick.cluster.elbow iginde bir
sinif), 82

M

make_transformer() (yellowb-
rick.text.tsne. TSNEVisualizer metodu), 96

ManualAlphaSelection (yellowbrick.regressor.alphas
icinde bir sinif), 68

N

normalize() (yellowbrick.features.radviz.Radial Visualizer
statik metodu), 36

normalizers (yellowbrick.features.pcoords.ParallelCoordinates

niteligi), 45

metodu), 85

finalize() (yellowbrick.features.importances.Featurelmportall'ges
metodu), 53

finalize() (yellowbrick.features.jointplot.JointPlotVisualizer
metodu), 59

finalize() (yellowbrick.features.pca.PCADecomposition
metodu), 48

finalize() (yellowbrick.features.pcoords.ParallelCoordinates
metodu), 45

finalize() (yellowbrick.features.radviz.Radial Visualizer
metodu), 36

finalize() (yellowbrick.features.scatter.ScatterVisualizer
metodu), 57

finalize() (yellowbrick.regressor.alphas.AlphaSelection
metodu), 68

finalize() (yellowbrick.regressor.residuals.PredictionError
metodu), 65

finalize() (yellowbrick.regressor.residuals.ResidualsPlot
metodu), 62
finalize() (yellowbrick.text.freqdist.FrequencyVisualizer

metodu), 92

finalize() (yellowbrick.text.tsne. TSNEVisualizer —me-
todu), 96

fit() (yellowbrick.cluster.elbow.KElbow Visualizer me-
todu), 84

fit() (yellowbrick.cluster.silhouette.Silhouette Visualizer
metodu), 85

fit() (yellowbrick.features.importances.FeatureImportances
metodu), 53

fit() (yellowbrick.features.jointplot.JointPlotVisualizer
metodu), 59

fit() (yellowbrick.features.pca.PCADecomposition me-
todu), 48

fit() (yellowbrick.features.scatter.ScatterVisualizer me-
todu), 57

fit() (yellowbrick.regressor.alphas.AlphaSelection me-
todu), 68

fit() (yellowbrick.regressor.alphas.ManualAlphaSelection
metodu), 69

fit() (yellowbrick.regressor.residuals.ResidualsPlot me-
todu), 62

fit() (yellowbrick.text.freqdist.FrequencyVisualizer me-
todu), 92

fit() (yellowbrick.text.tsne. TSNEVisualizer metodu), 96
Frequency Visualizer (yellowbrick.text.freqdist i¢inde bir
sinif), 91

G

get_color_cycle() (yellowbrick.style.colors
icinde), 130

modiilii

J

JointPlotVisualizer (yellowbrick.features.jointplot icinde

NULL_CLASS (yellowbrick.text.tsne. TSNEVisualizer
niteligi), 96

P

ParallelCoordinates (yellowbrick.features.pcoords iginde
bir sinif), 44

PCADecomposition (yellowbrick.features.pca icinde bir
sinif), 47

poof() (yellowbrick.features.jointplot.JointPlotVisualizer
metodu), 59

PredictionError (yellowbrick.regressor.residuals iginde
bir siif), 64

R

RadialVisualizer (yellowbrick.features.radviz icinde bir
sinif), 35

RadViz (yellowbrick.features.radviz modiilii i¢inde), 36

Rank1D (yellowbrick.features.rankd i¢inde bir sinif), 40

Rank2D (yellowbrick.features.rankd i¢inde bir sinif), 41

ranking_methods (yellowbrick.features.rankd.Rank1D
niteligi), 41

ranking_methods (yellowbrick.features.rankd.Rank2D
niteligi), 42

reset_defaults() (yellowbrick.style.rcmod modiilii i¢inde),
133

reset_orig() (yellowbrick.style.rcmod modiilii iginde),
133

ResidualsPlot (yellowbrick.regressor.residuals iginde bir
sinif), 61

resolve_colors() (yellowbrick.style.colors
icinde), 130

ROCAUC (yellowbrick.classifier.rocauc iginde bir sinif),
76

modiilii

S

ScatterVisualizer (yellowbrick.features.scatter icinde bir
sinif), 56

166

Dizin

yellowbrick Documentation, Siiriim 0.5

score() (yellowbrick.classifier.class_balance.ClassBalance

metodu), 80

score() (yellowbrick.classifier.classification_report.ClassificationReport
metodu), 72

score() (yellowbrick.classifier.confusion_matrix.ConfusionMatrix
metodu), 75

score() (yellowbrick.classifier.rocauc. ROCAUC metodu),
78

score() (yellowbrick.regressor.residuals.PredictionError
metodu), 65

score() (yellowbrick.regressor.residuals.ResidualsPlot
metodu), 62

set_aesthetic() (yellowbrick.style.rcmod modiilii i¢inde),
132

set_color_codes() (yellowbrick.style.palettes modiili
icinde), 132
set_palette() (yellowbrick.style.rcmod modiili iginde),

133
set_style() (yellowbrick.style.rcmod modiilii iginde), 132
Silhouette Visualizer (yellowbrick.cluster.silhouette

icinde bir sinif), 85

T

ThreshViz (yellowbrick.classifier.threshold — modiilii
icinde), 81

transform() (yellowbrick.features.pca.PCADecomposition
metodu), 48

TSNEVisualizer (yellowbrick.text.tsne iginde bir simif),
95

Y

yellowbrick.anscombe (modiil), 33
yellowbrick.classifier.class_balance (modiil), 79
yellowbrick.classifier.classification_report (modiil), 71
yellowbrick.classifier.confusion_matrix (modiil), 73
yellowbrick.classifier.rocauc (modiil), 76
yellowbrick.classifier.threshold (modiil), 81
yellowbrick.cluster.elbow (modiil), 82
yellowbrick.cluster.silhouette (modiil), 85
yellowbrick.features.importances (modiil), 52
yellowbrick.features.jointplot (modiil), 57
yellowbrick.features.pca (modiil), 47
yellowbrick.features.pcoords (modiil), 44
yellowbrick.features.radviz (modiil), 35
yellowbrick.features.rankd (modiil), 40
yellowbrick.features.scatter (modiil), 56
yellowbrick.regressor.alphas (modiil), 67
yellowbrick.regressor.residuals (modiil), 61, 64
yellowbrick.style.colors (modiil), 130
yellowbrick.style.palettes (modiil), 131
yellowbrick.style.rcmod (modiil), 132
yellowbrick.text.freqdist (modiil), 91
yellowbrick.text.tsne (modiil), 95

Dizin 167

	Görselleştiriciler
	Özellik Görselleştirme
	Klasifikasyon Görselleştirme
	Regresyon Görselleştirme
	Kümesel Görselleştirme
	Metin Görselleştirmesi

	Yardım İçin
	Açık Kaynak
	İçindekiler Tablosu
	Hızlı Başlangıç
	Model Seçim Eğitseli
	Görselleştiriciler ve API
	Kullanıcı Testi Talimatları
	Katkıda Bulunun
	Efektif Matplotlib
	Hakkında
	Değişiklik Kayıtları

	Dizinler ve Tablolar
	Python Modül Dizini

