Yellowbrick Documentation
Xt v0.5

The scikit-yb developers

2019 £ 04 A 07 H

Contents

1 Visualizers 3
L1 BRERTARAL . o o o e 3
1.2 ZZEMTHIAL . o 3
L3 HRHAL o o 4
1.4 BEERAL . . o 4
1.5 SCARAIHIAL . o o e 4

2 RIRH 5

3 JHR 7

4 Hox 9
4.1 PREETFEE . . o e e 9
4.2 BEREFZRL . . . e 19
4.3 Visualizers and APL 34
4.4 User Testing Instructions oo 150
4.5 Contributing L 152
4.6 Effective Matplotlib e 164
4.7 About e e 172
4.8 Changelog o e e e 175

5 FGIHHH 185

Python BE 5| 187

#5l 189

Yellowbrick Documentation, & %5 v0.5

W S 2] Yellowbrick!
FAT BT IEAE R SCRY B S, RS e Rk .

HH., FAVERFET KA T AAREER B ATRIEE, 1 yellowbrick-docs-zh $232—> pull request. 1l
PRS2 FF Yellowbrick JBO%H#K, 5 m codebase $#£37—4> pull request.,

Pearson Ranking of 23 Features © Residuals for Ridge Model

10] TSNE Projection of 448 Documents
Training Data
08 Test Data
. '
o

a0 0
Predicled Value

Yellowbrick & H—E#FRr A7 Visualizers” 0L BT L2 W T H AR ELR , H Scikit-Learn APT fEAf
MR, XA RSRHIE TEM . B2, Yellowbrick 456 T Scikit-Learn 1 Matplotlib I Hiif{5% &
T Scikit-Learn 3R, Xt {Re9M Tl 4040 ! BEE LU T ## Yellowbrick, i/ About

WRARSE— R #2 il Yellowbrick, T EF Peik 7744 80 BB 45 2042 o Yellowbrick @& — A FRE M FE,
I HEIMAZA Visualizers, AHZX] T fi#fFE Visualizers 5 24015 By XA |, 5 RIAE Visualizers
and API . TRARAENT Yellowbrick EH Tk, {E&F contributing guide . TRARE L4442 P,
TEEIEE User Testing Instructions (5!) .

Contents

https://github.com/DistrictDataLabs/yellowbrick-docs-zh
https://github.com/DistrictDataLabs/yellowbrick
https://scikit-learn.org/stable/developers/contributing.html#contributing

Yellowbrick Documentation, 445 v0.5

2 Contents

CHAPTER 1

Visualizers

Visualizers 1,2 estimators (MEE T IFAIRTS) , H A BAL 5527 A v WAL PR BE SR A T RN
PP, M Scikit-Learn K7, 4RI WALEHE 25 [0) o 34 £ 56— AL estimator B, HAFNFEHRS (transformers)
AHEL, 18 "ModelCV” (Fb4n RidgeCV, LassoCV)) TAEREIE—#f. Yellowbrick {322 H fr /2 @ —~F1
Scikit-Learn 25IA & X i) APL, Hii 200 R visualizers fl45

1.1 FHEaT#LML

o Rank Features: X FAABE PG R BRFAESEATHE R ARSI HCAH &M
e Parallel Coordinates: Xt SEBIHEFT /KL

e Radial Visualization: F£—[EFEARE F 55526143 B T

o PCA Projection: i3 3 5204 S B #5551

o Feature Importances: BT EAHERZA AP)RR AESEATHER?

o Scatter and Joint Plots: FIREEERRHERT AT AT HAL,

1.2 sr3en[ift

e Class Balance: F&ISHY5 1 B MR 7
o Classification Report: FFLEM T REIEMR, HEFM F1 {4
e ROC/AUC Curves: FBEHhZef ROC H&k 17 FrymE

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeCV.html
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoCV.html

Yellowbrick Documentation, 445 v0.5

o Confusion Matrices: ¥4y AT E b

1.3 EEFETHE

o Prediction Error Plot: {53 B s R I gt 4740 4>
Residuals Plot: SR N ZREERANMIREIE ik 22 1) 22 57
Alpha Selection: ‘@7 AN[A] alpha fEREREN IE WAL 52 R

1.4 REÐME

K-Elbow Plot: J{F: 0 E 2 HA FE bR e k
Silhouette Plot: 13X} 56 BE R EUE VAT E R EH k 14

et
(&)

AT

o Term Frequency: X TAE ERE W A4 A s R 3047 nT 44k
o 1-SNE Corpus Visualization: FBERLARIE R A SRS S0RY

.. A £ Visualizers FEESZERGINH, ES5UAF RG] (F22 develop branch), I HFfERUGEAR

X Visualizers TTHk H & B9AEE:

Chapter 1. Visualizers

https://github.com/DistrictDataLabs/yellowbrick/tree/develop

CHAPTER 2

TREX S Bl

Yellowbrick &—M&7K [Matplotlib 1 Scikit-Learn [#E AR H . FIX LI H —FE, A 1ZESF Python
Software Foundation Code of Conduct . R FIHFEY . s FH AT H 750wk . 80 A A i 75240
H, WEABER, FHRPFRATHRE

FRES By B TR AETRATTE Google Groups Listserv A o 3% @4t X 2 BT RAIILA LA K B AH] 1)
— MRS S5 AR BARMN Z BB B B PR R N o Ay AR RE S RN AKX AN 2H, ARt] DA] 25)
B PR PATE Stack Overflow and tag them with "yellowbrick”. Or you can add issues on GitHub. You

can also tweet or direct message us on Twitter @DistrictDataLab [[f] [a) 5 ,

http://www.python.org/psf/codeofconduct/
http://www.python.org/psf/codeofconduct/
https://groups.google.com/forum/#!forum/yellowbrick
http://stackoverflow.com/questions/tagged/yellowbrick
https://twitter.com/districtdatalab

Yellowbrick Documentation, 445 v0.5

6 Chapter 2. 3XEEB)

CHAPTER 3

TR

Yellowbrick license {#i f{H Apache 2.0 ¥ 0[{F. Yellowbrickx G — N AEH G BREIHF & F 4L X5 5 Em
A1 H. vk !

Yellowbrick 7£ GitHub FF645 . issues Fl pull requests HRiC7E L -

https://github.com/DistrictDataLabs/yellowbrick/blob/master/LICENSE.txt
http://www.apache.org/licenses/LICENSE-2.0
https://github.com/DistrictDataLabs/yellowbrick/blob/develop/CONTRIBUTING.md
https://github.com/DistrictDataLabs/yellowbrick/
https://github.com/DistrictDataLabs/yellowbrick/issues/
https://github.com/DistrictDataLabs/yellowbrick/pulls

Yellowbrick Documentation, 445 v0.5

8 Chapter 3. FFiE

CHAPTER 4

Bx

XASASERY) Yellowbrick SCRSIF) 588 IE BLANF -

4.1 REFFIG

URARX Yellowbrick i ANZAGE, X ANH0RE AT DA BIARAR PR L nl Wl fkaz T EMRBLE 2 T iR b 2. A
WAEFATTIE N Yellowbrick ZHi, A LA AFMFA I 1) I 2 E .

Yellowbrick 2K T W~ f: Scikit-Learn 1 Matplotlib. QR AREEA X NEMEE X FR, YBiRLRE
Yellowbrick [y, ESTRRFENT—EE . FEEEN S, T4 Yellowbrick kBB AENCR, K245
£ Scikit-Learn 0.18 Al Matplotlib 2.0 & PA EARCAGEN . R4 Lk PR C 155 i, R RS -
(Fetn Windows) Z24Em Pl RES A —LEEIME. ARARZIAEME, ATAGE Anaconda 4 HABAMA Python.

4.1.1 &HE

Yellowbrick S #8A1 Python 2.7 K DAJSHRAS AR, (H /2 QR R AR 45 A1 1 40 B , @S5 A Python
3.5 MPAJGRA—EMT . 223 Yellowbrick i FA) %@ M PyPL_ [l pip_ (Python {22 2
FEFF) 2%

$ pip install yellowbrick

TR Yellowbrick & ANERIIH , HATSBAAHIINA, I 0 HIRARS SR
ARSI RETCRT. 8 T4 Yellowbrick FHEEURAIRA, (AT DU pip 54

http://scikit-learn.org/
http://matplotlib.org/
https://anaconda.org

Yellowbrick Documentation, 445 v0.5

$ pip install -u yellowbrick

PRWAT AR —u FRicXt Scikit-Learn, matplotlib 57 HAhA Yellowbrick &R = 63477144
MR B 2 Windows B# Anaconda, #RtBA]PAFESFIH conda INHEZEE Anaconda Yellowbrick

package :

conda install -c districtdatalabs yellowbrick

— FEAF, RAFRZAE Python ISR TE Jupyter notebooks 13517 Yellowbrick M b i T . H%:
VR, 2K Yellowbrick i)/ matplotlib, HIF/RAEFERERIFRES TizfT. MBIk R0, TThE
T LA

4.1.2 {#H Yellowbrick

T EAASRL A Scikit-Learn —&], FATRFEXT Yellowbrick APT #4177 —S8kFikis it 248 Hid 21
B2 “Visualizer” —ANAT DAhis R A B T R4 visualizer 22— %41 Scikit-Learn [Estimator
MG HANE) T EARZH I . A Scikit-Learn ZAUH [F R RARAHE],] visualizer HLFF25ERFH 2L
A REBIGA, FRIE fit() A, RIGTEAI “poof() HiE——R a2 WAk A AR —Z1 T .

tan, HRZ visualizer W DA NEIRER MM , N TAEBAN G Z BIRPRAESEAT AT . DX AT o
AR AR P AL AR o0 v i B A T

from yellowbrick.features import ParallelCoordinates

visualizer = ParallelCoordinates()
visualizer.fit_transform(X, y)

visualizer.poof ()

EAARIT R BB —FE, XA TAERFEFIA Scikit-Learn [FEHedt 2 —FE, I H. visualizer (1) H e A
Scikit-Learn [A2 FAHE A . Fl Scikit-Learn A7 SE—FE, visualizer [ZE0H AT DATE H LBk
RIS AL B2, X ASSH00T DAk 2 i 1 1 =X

poof O Jy VA Mok Fe s A H i (AR, BARSE454E), SRIEARIEAR B O AR A T IE gL
IR /2 Jupyter notebook (3%, SLZIEN XA & . WIRARIZFTHYE Python AT,
K F SAE— A EIE R 1 DA E R R BB R . 2498, IR AT AR R 21 3 — A SO Rz,
FEHARATAEA HO R B

visualizer.poof (outpath="pcoords.png")

A A e E AN Qe 2. 18 T .png, .pdf PR MR i —Fh.

Visualizer ¥4 [#5f%¢ Scikit-Learn BB 5 XA T PP, @ SHOM I BEEES: . b, AT PAA heatmap J7
O RERIAT AT AL, HR R RSB, A 122, FLAH, 9 B3 R85 th I BT LASSHE SCHF o FF estimator
BPEAE visualizer 7 ERIF :

10 Chapter 4. B

https://conda.io/docs/intro.html
https://anaconda.org/DistrictDataLabs/yellowbrick
https://anaconda.org/DistrictDataLabs/yellowbrick
http://scikit-learn.org/stable/developers/contributing.html#apis-of-scikit-learn-objects

Yellowbrick Documentation, & %5 v0.5

from yellowbrick.classifier import ClassificationReport

from sklearn.linear_model import LogisticRegression

model = LogisticRegression()

visualizer = ClassificationReport (model)

visualizer.fit(X_train, y_train)
visualizer.score(X_test, y_test)

visualizer.poof ()

HBEEAAE SRR A Z FEMAWAT Al TR k. BREBML—D5KN
ClassificationReport [t visualizer, Ff¥§4r28 estimator F gk, RIGRHHE poof() Fik. X
¥, Visualizers BE * 3458 * THLAF2% > 0 ARG SR Hb A7 T4 .

T2 APT @@ B A Scikit-Learn T AR . SR BRI 75 B pRos o0) i 5 4
IR, Yellowbrick A —SETEER] DASZFFHGEAE o« H QX W ASS WAL I o] DA a0 5 ¥R 551 :

from sklearn.linear_model import LogisticRegression

from yellowbrick.features import parallel_coordinates

from yellowbrick.classifier import classification_report

Displays parallel coordinates

g = parallel_coordinates(X, y)

Displays classification report

g = classification_report(LogisticRegression(), X, y)

X UL P B 53 AT RE AT SR I PO B LR) TARTRAR AR, FU2 AT AT ARAR BRAS AR VR A 2R
XA TS W AR R AR P AR R A R

4.1.3 EL R

X HLH — AN [A 20 B 4 18 B 5ok o (B REAE ML 2 > AR P visualizers, B3] UCT Hlds7
IR B SRR e BATAT DA T R SR AR H AR B IEAS/ N B A 1T 4 A%
TR

FEART BT AR S AR 4 2R H Al TAE SR Za, BRATAT AR 40 R 53R

import pandas as pd

data = pd.read_csv('bikeshare.csv')

(QE29)

4.1. BRiEFIE 11

https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
https://s3.amazonaws.com/ddl-data-lake/yellowbrick/bikeshare.zip

Yellowbrick Documentation, 445 v0.5

X = datall[
"season", "month", "hour", "holiday", "weekday", "workingday",
"weather", "temp", "feelslike", "humidity", "windspeed"

1]

y = data["riders"]

Plas=z I HRA R B * B = F 22 * IR, KL, SRR S BRI E— & M 4L — 52
FrE oz R E N BR R b MR a), FRATRR ZERPRIHAbAT 2 ¢ R 1 — TR R 1
Ko PUAIX R RFAEA AT RERF 7 225 | AZIBEAL I AR OLS (CRFATS LA B RS BRRp A e 6 IR0 Ak iy
). FATTEUI Rank2D_ visualizer R PTARFAEFIN Z (][] Pearson #15¢ REOTI 1A, RAABAE
wr:

from yellowbrick.features import Rank2D

visualizer = Rank2D(algorithm="pearson")
visualizer.fit_transform(X)

visualizer.poof ()

Pearson Ranking of 11 Features

1.00
10
_
8 0.50
0.25
6
0.00
4 -0.25
. -0.50
2
-0.75
0 -1.00
0 2 4 6 8 10

RIS PIRHEZ [8] Pearson IR AKL, HAo AR A/IMERE x M1y Bl B SR
HRFRE, HBTOR TR R R BIIE R/ ME . 24 Pearson RN 1.0 I, FR ML A4 38 2101

12 Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

IEROLME X, T-1.0 MR PIAMERE 2 [SR B0 SR e AT 5 (T O MR AT (EATAR 56) . IR
T YR B IR (7 B AT A

TEXAE EFATATAB BIFHIE 7 (temperature) FIFHE 9 (feelslike) ARGRAYAN XM, I HAFE O (season)
FFAE 1 (month) WARMRAH M. X IR A LETE R FA DT AR BE MR T 552 o dfi DA B JH A 28 <ot
BRI T, I LA B Rt AR . b TR IR, e AT DL Joint-
PlotVisualizer 232 HoAH 54

from yellowbrick.features import JointPlotVisualizer

visualizer = JointPlotVisualizer(feature='temp', target='feelslike')
visualizer.fit(X['temp'], X['feelslike'])

visualizer.poof ()

4.1. BRiEFIE 13

http://www.scikit-yb.org/en/latest/api/yellowbrick.features.html#module-yellowbrick.features.jointplot
http://www.scikit-yb.org/en/latest/api/yellowbrick.features.html#module-yellowbrick.features.jointplot

Yellowbrick Documentation, 445 v0.5

1.0

0.8

0.6

Teelslike

0.4

0.2

0.0

0.0 0.2 04 0.6 0.8 1.0
temp

LT visualizer it 7 —NHURE, Hoby BREGERIR T, x RSP, RS TR — T R R At
R R AR AR R LRI E2 o 38h, IR PR R A A1 DU BT B 24 SITE x Bl (temp)
ER vy i (feelslike) AHMIER. JointPlotVisualizer ihFRATHEPE N WS A TRAH 2 HEAVARE, PAKREAS
FAERTEE M AT 0L 5 2E R R B A M 22 0 2] 1 Z[Ii(E, X@blasss~d h—rh
FEH B — AN RREXT S — SRR .

XA AER AR ot feelslike 45T 0.25 AMFBRA LR H(E. 8 DB TR, hifFHRER
IR HHER T N T RSB, PR S v e edledan A A 2. LR, AT DA 2 8 22 A Wi L5 mT DA ERAN
TR N R, ; REEUR, AMTH0BE 5 BB, IR0 , A TEss KB 3& ik
WRE N B EEA AN L PR EEAM BT . XABAT D E IR feelslike 22— temp BAFAYHRFAE, FHAN
RHRFFATA T AT 1 PR3, FATY %A R temp ZZ R PR B feelslike,

14 Chapter 4. B

Yellowbrick Documentation, &% v0.5

B, BATATAVNGRFAIY 75 BATRINGE— DA R, B2 f HE2E

from yellowbrick.regressor import ResidualsPlot
from sklearn.linear_model import LinearRegression

from sklearn.model_selection import train_test_split

Create training and test sets
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.1

visualizer = ResidualsPlot(LinearRegression())
visualizer.fit(X_train, y_train)
visualizer.score(X_test, y_test)

visualizer.poof ()

Residuals for LinearRegression Model
400
©® Training Data)

© TestData

200

0
w
©
)
z
é =200
=400
-600
LY
ee°®
-100 0 100 200 300 400
Predicted Value

BRI E T DA /R 5 BB B 522, EAT DALEFRATILE BIREI) S0y 220 e, D5 22k
D3 FRIERTEAR AT AL FRA R 145 R AR A 218G 0 %) OLS . (R /D —3fedk) s i B K IX I 7
XFMEL T, FATATAFBIF RN (555 ANEGUN), S22l s r e 4 N EGHOR 122tk
Ko DOMRRE A TR L J AR DAy B 22 (W el TP AR i)R JE R, AR UAEA AT C AR
HH AR i AR AR T A TR

4.1. BRiEFIE 15

Yellowbrick Documentation, 445 v0.5

SR M BATRR TR AR B AT AR AL K-SR 2 residuals = 0, R EA
PR A BT RO R RN SR RZEE RN . O E 3522 2 04 E, HF HIAE /2 1 actual - expected
A5, WRLR VLR I [TR L SE PR B, H AN SEbr Al L A TR AL SR T A S 2 5 T 16F,
FERRZE IR A _EAEAT — AR AR 2 2k, B s B o — R R RO s ARV R
A —BERFIEA E K

HRJa ., B2 B AP AN GRRE AR AR IS T A) O B R o 3K R DA B AT T B 294 5 BAE DI R0 1.
FEAA SR AR ZE . ARINEAE A IR Z RN AR AR ZEA AT IIE . IR A T REAA R a2 KA
Bo TR A P REAS B BE D LB B AR AR 28 T 2%

PRI B o S R ECK 0.328, 1EBATEBEREAREM * LML * IIZh—DRAFRIRIAY, FERIINRER 7 —

A visualizer,

import numpy as np

from sklearn.linear_model import RidgeCV

from yellowbrick.regressor import AlphaSelection

alphas = np.logspace(-10, 1, 200)
visualizer = AlphaSelection(RidgeCV(alphas=alphas))
visualizer.fit(X, y)

visualizer.poof ()

16 Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

+2.172e4 RidgeCV Alpha Error
4.0

3.8

w
o

error (or score)
w
~

3.2

3.0 ——— ridge
-== =3.181

0 2 4 6 8 10
alpha

TERFEB KR SR, 55— DR B R A (SRR * SR * . MM SR BER I, 07
ZEHEIIE U R ZE AN, RO AR5 L& BN RRIZ AL BRI L. RN, AL By
P ZET) RZEE L O B RUG, IRIA S A AR B TEI HR Bl T 1 H Al 27 A —A
*ROREEE T BB, AR ZEAN T 22 IR E] A T AL

XA LRMRRORL, SRR T RAEA S DASARIE R T E AT (. P BB B /by
AL IR BIRESER . FIENE ¢ RSN B HARE AR, BISIA > alpha ZHORITHA
HZ A RGO RCEA TR AL HART AR . Alpha MIBZREZ AZ— A5, alpha {HBCOR, 5%
FEBUIN, IR

A BB 6 BTSSRI alpha (17 . 30— SR AR A e LIRAER IS, 4851
PE iR 22 {H /M) alpha, AlphaSelection B 2SZH LA R ARM— visualizer, HPAEFEXEIIEN{L
PIROR . IR EERIFTR, RZEREE alpha {EAHEINITECNE B FATFZME (HEIEOL TR 3.181), ARJiR
FEFFE¥E I . XA T PASE B 22/ 0 25 AR B AR, I LRI RIS AN] () TR AR T YA 2 (B) % R TR R
(He4n Ridge XfF4 Lasso) .

FATIAE T AR T e A IR I HLY PredictionError X H AT T

from sklearn.linear_model import Ridge

from yellowbrick.regressor import PredictionError

visualizer = PredictionError(Ridge(alpha=3.181))

(T gk%E)

4.1. BRiEFIE 17

Yellowbrick Documentation, 445 v0.5

visualizer.fit(X_train, y_train)
visualizer.score(X_test, y_test)

visualizer.poof ()

Prediction Error for Ridge

-
400 e
“"f
«
300 K
°
°
©
3
3 200
3 °¢
o
100
0
800

Measured

MBI R visualizer KFsLfr (WA (EXHHE () FEHEFTTRAA. RO 45 EELIRIRERN 0 1Y
mho MR, EAERAT AR BIREA M, N2 K.

XA, FATTRT AR SIS oA s 4t /N T 200 B A 07 . FoAT i/ AE i FH 1 %2 DG s e vk
(OMP) s HEs% (spline) HIZ— K5 L KA [EHEAR B I VIR . FRA 18R] LA B3R 22 1A v A PR 1Y
AN B EWE Ridge BUHLIIE, 1 BAEFA AR HRMERVIMEZ A T HZ 1P . Ridge IEM{LRT
REAIE T PIANERAEZ R M5 22 0. 43T A 2 Py 1 2ORF BRI B o AT A RIS, AT T] AR
% visualizers PR LRI H AL ATAYE R o

Fir ERX N FRLLARXT EAERF Visualizers i Scikit-Learn #& BHLgr2f > h A — S, HFHAEIREL
TEARRE Gz F BRI TAE D WAL TR e 2 0 X BRI UR T Yellowbrick [IfEEL, HAF LA L4F
A2 . SRIGVREAE Visualizers and API _FIREEF FZ0YEE visualizers T,

FHi¥: Juan L. Kehoe

18 Chapter 4. B

https://juan0001.github.io/

Yellowbrick Documentation, & %5 v0.5

4.2 RERENE

TEAZRET , WAVRFEFAF Scikit-Learn BB 2EL, FHEH Yellowbrick BRI BT THXHHEATLE
B, DASERBATH RO ek i AR

4.2.1 ERIBEES TH

KTHERFE I WIS FE PSR F . TGe 28 B EIH, MR, I, 2 N TAZ M4,
BLAS 4> SE el AR RE R et s A T b . X LR A DT SR . RIS = bLas2s > JEfil
AR TE BSOS B8, EfEg b, EEDE b —Rh R n B ARt 55 2 AR I sE . BRI,
HHAWBIAAHL, Algss) SCEE AR E R OF IR g2 28 1) BB SR 2N e i
SR, BEBUBERE LG T PR b e IR B0 “BiiR” BRI . SEkd iy TAERAR 4

L. BN /s v e/ N e HL PR A e 4R

2. MBLRLZ R e — 2k, I H

3. A S E AR -
Bl EE — e 2 h Kumar 28 A, ¥£ 2015 £ SIGMOD X EREEH . A AIEScF, Rie® F—
AT BT AL AR E R G & . TEERPEMFR R, BT854 e S b B & R SL gk
WA VIR EGX R RS . “BIAGESR:) MATREE, “RERPNARRER, Hh (BB =) ry=sH]
W R ICRRAY, T ELE RN T RELL AT IR SE AR (HA) R A N B TR A/ B 5 07 .7
i, W2 TAERAEC L MEERTYE. ik APT fEF GUI W HARFSCIL T Haltk. 2R, 7F
St AR ECHFE TR DA ST 2 8 R A0 Ty TR R & . i T O B e Bt R, B blee
O] DG Trl i 217) . R ARREIIARAL Ik G0 S BIF AN G B -
Yellowbrick FEJ&—AMEXLgR2E T P TALIZ W& B iRl 2s s B A g 5id 7 . Yellowbrick
FH— Nz 059 B T Scikit-Learn f#) API: Visualizer, Visualizers fpiF i #ALELAI/E] Scikit-Learn
EAA R —FR - SE A T VS EC AN 4 , A TTAE = AR RS) i 4t R h R AR T A2

4.2.2 £FHIE
ARZFRE sk UCI Machine Learning Repository BE TS BB GEEIRERA . BATH H AR S E T ELW
S, TG A R '

PR S PR (Agaricus) MIFLEIE (Lepiota) FHft 23 Ffve o g%t i) BB AEAIA . okl
W X TR, XA RE, BORMA AT AR ETY: (RS AWML).

AT S “agaricus-lepiota.txt”, {8 3 A4 S EANEBIEIER A 8124 DEELESCBIY H AR (4208
AR, 3916 AT

1EFATH Pandas InEEE .

4.2. EEEERE 19

http://scikit-learn.org
http://www.scikit-yb.org
http://cseweb.ucsd.edu/~arunkk/vision/SIGMODRecord15.pdf
http://archive.ics.uci.edu/ml/

Yellowbrick Documentation, 445 v0.5

import os

import pandas as pd

names = [
'class',
'cap-shape',
1 — 1
cap-surface',

'cap-color'

mushrooms = os.path.join('data','agaricus-lepiota.txt')

dataset pd.read_csv(mushrooms)
dataset.columns = names

dataset.head ()

class cap-shape | cap-surface | cap-color

0 | edible bell smooth white

1 | poisonous | convex scaly white

2 | edible convex smooth gray

3 | edible convex scaly yellow

4 | edible bell smooth white
features = ['cap-shape', 'cap-surface', 'cap-color']
target = ['class']
X = dataset[features]

dataset [target]

<
1]

4.2.3 $HERE

FATWESE, WG HESE, B2 R AR TP ET, FoAT] 7 SR e 5 10 Ry i 2L
Bl T B PR EBOX — &, RATLAUEN Scikit-Learn [y #edy (transformers) i A%
RO E BRI R B4k . 321202, Sckit-Learn $EUE T — AR, TR 20 AR 0 B A
sklearn.preprocessing.LabelEncoder, ANERIE, B—R R —AmE, FroAR 15 m0d &7,
PASEREE N T2 191 .

from sklearn.base import BaseEstimator, TransformerMixin

from sklearn.preprocessing import LabelEncoder, OneHotEncoder

G¥E))

20 Chapter 4. B

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html

Yellowbrick Documentation, & %5 v0.5

class EncodeCategorical(BaseEstimator, TransformerMixin):

nmnn

Encodes a specified list of columns or all columns if None.

mmnn

def

def

def

__init__(self, columns=None):
self.columns = [col for col in columns]

self.encoders = None

fit(self, data, target=None):

mmnn

Ezpects a data frame with named columns to encode.
mmn

Encode all columns if columns is None

if self.columns is None:

self.columns = data.columns

Fit a label encoder for each column in the data frame
self.encoders = {

column: LabelEncoder().fit(datalcolumn])

for column in self.columns

}

return self

transform(self, data):

mmnn

Uses the encoders to transform a data frame.

mmnn

output = data.copy()
for column, encoder in self.encoders.items():

output [column] = encoder.transform(datal[column])

return output

4.2.4 BRE5S¥E

4.2. EEEERE

21

Yellowbrick Documentation, 445 v0.5

PP R E AigR

K (Precision) J& IR 1 BHPESS R AGECRER LARTA BHPESS R KR (BN, FATHTI i) vl £ i s 52 b
EHZPT)

HAllF (Recall) J2 EAHRYBHTESS SR AL B AR iR [0l B FHPE S R G0 RCE: (B, FROTHERRHN T2 /04
LR AN

F1 5% (F1 score) J iR RER) —FEF S bRofE . 8 () ol 2% Fl iR o BE R 1 [l S sk i B 0B, L 45
70 AT AERE AR BRI [AR IBCF9(E, b FLASME 1 AR BIRAEE, 7E 0 AbikFIiR2E(E.

precision = true positives / (true positives + false positives)

recall = true positives / (false negatives + true positives)

F1 score = 2 * ((precision * recall) / (precision + recall))

IRAE A THE A8 AR 1 — L0 !

UL TR — R T 2588 (multiple estimators) 107k —— & S6H M 4 RIRLE AL (FATRIEHE 5
Yellowbrick i e[HLALIS T HETT O)

from sklearn.metrics import fl_score

from sklearn.pipeline import Pipeline

def model_selection(X, y, estimator):

nmnn

Test wvarious estimators.

wn

y = LabelEncoder() .fit_transform(y.values.ravel())

model = Pipeline([
('label_encoding', EncodeCategorical(X.keys())),
('one_hot_encoder', OneHotEncoder()),
('estimator', estimator)

D

Instantiate the classification model and visualizer

model.fit (X, y)

expected y

model.predict (X)

predicted

(T D)

22 Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

(8:EW)

Compute and return the F1 score (the harmonic mean of precision and recall)

return (f1_score(expected, predicted))

Try them all!

from sklearn.svm import LinearSVC, NuSVC, SVC

from sklearn.neighbors import KNeighborsClassifier

from sklearn.linear_model import LogisticRegressionCV, LogisticRegression, SGDClassifier

from sklearn.ensemble import BaggingClassifier, ExtraTreesClassifier,

—RandomForestClassifier

model_selection(X, y, LinearSVC())
0.65846308387744845

model_selection(X, y, NuSVC())
0.63838842388991346

model_selection(X, y, SVCQO))
0.66251459711950167

model_selection(X, y, SGDClassifier())

0.69944182052382997

model_selection(X, vy,

KNeighborsClassifier())

0.65802139037433149

model_selection(X, vy,

LogisticRegressionCV())

0.65846308387744845

model_selection(X, vy,

LogisticRegression())

4.2. EEEERE

23

Yellowbrick Documentation, 445 v0.5

0.65812609897010799

model_selection(X, y, BaggingClassifier())

0.687643484132343

model_selection(X, y, ExtraTreesClassifier())

0.68713648045448383

model_selection(X, y, RandomForestClassifier())

0.69317131158367451

DS WU

MR LT F1 0B s, WA A R Bl i ?

4.2.5 EIUHLERIEE

WAE, AEFRATEMBR AL KA, fH Yellowbrick [y ClassificationReport 3¢, iXjg—MEA AL T A,
AR KR EE . A BRAN FL 434 3 AT A2 40 A T 2L R B T BB 43 BOA SR € S) #A 1
PASCRE (&7 FRL A AR REAIAS I, R i 2 0 T 3AT T BT 5 AEFEAHE (PEanilk!) 155 —2845iR (Type T error) Al
5B 24% (Type I error) BOZ0MZE 5.

B JHEDE (50 ™ IBIE (false positive)”) RN FIVRAFAERURC (0, S5 9E 12T LI
W, ERAE).

B (3 “BIMEY Pfalse negative”) SR BEKWBEL RN (U, MRSk A0, 20
PR ATALIY)

from sklearn.pipeline import Pipeline

from yellowbrick.classifier import ClassificationReport

def visual_model_selection(X, y, estimator):

mmnn

Test wvartous estimators.

nmnn

y = LabelEncoder().fit_transform(y.values.ravel())

(T gk%E)

24 Chapter 4. B

Yellowbrick Documentation, &7 v0.5

(8:EW)

model = Pipeline([
('label_encoding', EncodeCategorical(X.keys())),
('one_hot_encoder', OneHotEncoder()),
('estimator', estimator)

D

Instantiate the classification model and visualizer

visualizer = ClassificationReport(model, classes=['edible', 'poisonous'])

visualizer.fit(X, y)
visualizer.score(X, y)

visualizer.poof ()

visual_model_selection(X, y, LinearSVC())

LinearSVC Classification Report

edible

Classes

poisonous

& &

Measures

00

visual_model_selection(X, y, NuSVC())

4.2. REEERE

25

Yellowbrick Documentation, &5 v0.5

MuSVC Classification Report

edible

Classes

poisonous

&

e

&

Measures

visual_model_selection(X, y, SVC())

26

Chapter 4. B

Yellowbrick Documentation, &7 v0.5

10

SVC Classification Report 09

0.8

edible 07
06

05

04

poisonous 03
0.2

N éﬁﬁ 0.1

Qm"ﬁ é? & 0.0

Measures

Classes

visual_model_selection(X, y, SGDClassifier())

4.2, EREFREHIE 27

Yellowbrick Documentation, &5 v0.5

SGDClassifier Classification Report

edible

Classes

poisonous

f ﬁ ‘b’éﬁe D:[l

Measures

visual_model_selection(X, y, KNeighborsClassifier())

28 Chapter 4. B

Yellowbrick Documentation, &7 v0.5

10

KNeighborsClassifier Classification Report 0.9

08

edible 07
06

05

0.4

poisonous 03
0.2

N 0.1

faﬁ é? Q’éﬁe 0.0

Classes

Measures

visual_model_selection(X, y, LogisticRegressionCV())

4.2, EREFREHIE 29

Yellowbrick Documentation, &5 v0.5

LogisticRegressionCV Classification Report

edible

Classes

poisonous

rd < d '

Measures

visual_model_selection(X, y, LogisticRegression())

30 Chapter 4. B

Yellowbrick Documentation, &7 v0.5

10
LogisticRegression Classification Report 0.9
0.8
edible 07
0.6
05
04
poisonous 03
0.2
W
e & v

Classes

Measures

visual_model_selection(X, y, BaggingClassifier())

4.2. EEEERE 31

Yellowbrick Documentation, &5 v0.5

edible

Classes

poisonous

& &

Measures

BaggingClassifier Classification Report

visual_model_selection(X, y, ExtraTreesClassifier())

32

Chapter 4. B

Yellowbrick Documentation, &7 v0.5

ExtraTreesClassifier Classification Report

Classes

& &

Measures

edible
poisonous

#

1.0

visual_model_selection(X, y, RandomForestClassifier())

4.2. REEERE

33

Yellowbrick Documentation, &5 v0.5

RandomForestClassifier Classification Report

edible

Classes

poisonous

rd < d '

Measures

4.2.6 1£3&

L BUAE, WRP AR R A R 7 A
2. W MEARL A T RERURIN A ?
3. ATHLLBE AL 5 B EREALT A, RS RA (T AN ?

4.3 Visualizers and API

Welcome the API documentation for Yellowbrick! This section contains a complete listing of all currently
available, production-ready visualizers along with code examples of how to use them. Use the links below to

navigate to the reference for each visualization.

4.3.1 Example Datasets

Yellowbrick hosts several datasets wrangled from the UCI Machine Learning Repository to present the

examples in this section. If you haven’t downloaded the data, you can do so by running:

34 Chapter 4. B

http://archive.ics.uci.edu/ml/

Yellowbrick Documentation, & %5 v0.5

$ python -m yellowbrick.download

This should create a folder called data in your current working directory with all of the datasets. You can

load a specified dataset with pandas.read_csv as follows:

import pandas as pd

data = pd.read_csv('data/concrete/concrete.csv')

The following code snippet can be found at the top of the examples/examples.ipynb notebok in Yellowbrick.

Please reference this code when trying to load a specific data set:

from yellowbrick.download import download_all

The path to the test data sets
FIXTURES = os.path.join(os.getcwd(), "data")

Dataset loading mechanisms

datasets = {
"bikeshare": os.path.join(FIXTURES, "bikeshare", "bikeshare.csv"),
"concrete": os.path.join(FIXTURES, "concrete", "concrete.csv"),
"credit": os.path.join(FIXTURES, "credit", "credit.csv"),
"energy": os.path.join(FIXTURES, "energy'", "energy.csv'"),
"game": os.path.join(FIXTURES, "game", "game.csv"),
"mushroom": os.path.join(FIXTURES, "mushroom", "mushroom.csv"),

"occupancy": os.path.join(FIXTURES, "occupancy", "occupancy.csv'"),

def load_data(name, download=True):
Loads and wrangles the passed in dataset by name.

If download is spectified, this method will download any missing files.

nnn

Get the path from the datasets

path = datasets[name]

Check <f the data exists, otherwise download or raise
if not os.path.exists(path):

if download:

—~

T UakEL)

4.3. Visualizers and API 35

Yellowbrick Documentation, 445 v0.5

(8:EW)

download_all()
else:
raise ValueError ((
"'{}' dataset has not been downloaded, "
"use the download.py module to fetch datasets"

) .format (name))

Return the data frame
return pd.read_csv(path)

Note that most of the examples currently use one or more of the listed datasets for their examples (unless
specifically shown otherwise). Each dataset has a README.md with detailed information about the data
source, attributes, and target. Here is a complete listing of all datasets in Yellowbrick and their associated

analytical tasks:
e bikeshare: suitable for regression
e concrete: suitable for regression
« credit: suitable for classification/clustering
e energy: suitable for regression
e game: suitable for classification
¢ hobbies: suitable for text analysis
o mushroom: suitable for classification/clustering

e occupancy: suitable for classification

4.3.2 Anscombe’s Quartet

Yellowbrick has learned Anscombe’s lesson - which is why we believe that visual diagnostics are vital to

machine learning.

import yellowbrick as yb
import matplotlib.pyplot as plt

g = yb.anscombe()
plt.show()

36 Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

15.0
12.5
10.0
75
50

25
0.0
15.0

125 L]

10.0
75 (R

50
25

0.0
0o 25 50 75 100 125 150 00 25 50 75 100 125 150

API| Reference

Plots Anscombe’s Quartet as an illustration of the importance of visualization.

yellowbrick.anscombe.anscombe ()

Creates 2x2 grid plot of the 4 anscombe datasets for illustration.

4.3.3 Feature Analysis Visualizers

Feature analysis visualizers are designed to visualize instances in data space in order to detect features or
targets that might impact downstream fitting. Because ML operates on high-dimensional data sets (usually
at least 35), the visualizers focus on aggregation, optimization, and other techniques to give overviews of the
data. It is our intent that the steering process will allow the data scientist to zoom and filter and explore

the relationships between their instances and between dimensions.
At the moment we have five feature analysis visualizers implemented:
e Rank Features: rank single and pairs of features to detect covariance
e RadViz Visualizer: plot data points along axes ordered around a circle to detect separability

e Parallel Coordinates: plot instances as lines along vertical axes to detect classes or clusters

4.3. Visualizers and API 37

Yellowbrick Documentation, 445 v0.5

e PCA Projection: project higher dimensions into a visual space using PCA
e Feature Importances: rank features by relative importance in a model
e Direct Data Visualization: plot instances by selecting subsets of features

Feature analysis visualizers implement the Transformer API from Scikit-Learn, meaning they can be used
as intermediate transform steps in a Pipeline (particularly a VisualPipeline). They are instantiated in
the same way, and then fit and transform are called on them, which draws the instances correctly. Finally

poof or show is called which displays the image.

Feature Analysis Imports

NOTE that all these are avatilable for import directly from the “yellowbrick.features
—module

from yellowbrick.features.rankd import Rankl1D, Rank2D

from yellowbrick.features.radviz import RadViz

from yellowbrick.features.pcoords import ParallelCoordinates

from yellowbrick.features. jointplot import JointPlotVisualizer

from yellowbrick.features.pca import PCADecomposition

from yellowbrick.features.importances import FeatureImportances

from yellowbrick.features.scatter import ScatterVisualizer

RadViz Visualizer

RadViz is a multivariate data visualization algorithm that plots each feature dimension uniformly around
the circumference of a circle then plots points on the interior of the circle such that the point normalizes its
values on the axes from the center to each arc. This mechanism allows as many dimensions as will easily fit

on a circle, greatly expanding the dimensionality of the visualization.

Data scientists use this method to detect separability between classes. E.g. is there an opportunity to learn

from the feature set or is there just too much noise?

If your data contains rows with missing values (numpy.nan), those missing values will not be plotted. In
other words, you may not get the entire picture of your data. RadViz will raise a DataWarning to inform

you of the percent missing.

If you do receive this warning, you may want to look at imputation strategies. A good starting place is

scikit-learn Imputer.

Load the classtification data set

data = load_data('occupancy')

Specify the features of interest and the classes of the target
features = ["temperature", "relative humidity", "light", "CO02", "humidity"]

classes = ['unoccupied', 'occupied']

(Q3)

38 Chapter 4. B

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Imputer.html

Yellowbrick Documentation, & %5 v0.5

(8 L)

Extract the numpy arrays from the data frame

>
]

data[features] .as_matrix()

data.occupancy.as_matrix()

<
I

Import the visualizer

from yellowbrick.features import RadViz

Instantiate the visualizer

visualizer = RadViz(classes=classes, features=features)

visualizer.fit(X, y)
visualizer.transform(X) # Transform the data

visualizer.poof ()

Draw/show/poof the data

Fit the data to the visualizer

RadViz for 5 Features

ight
g L]

coz

.relative humidity ® unoccupied
occupied

temperature
[

L .
humidity

For regression, the RadViz visualizer should use a color sequence to display the target information, as opposed

to discrete colors.

4.3. Visualizers and API

39

Yellowbrick Documentation, 445 v0.5

API| Reference

Implements radviz for feature analysis.

class yellowbrick.features.radviz.RadialVisualizer (ax=None, features=None, classes=None,

color=None, colormap=None, **kwargs)

HJs: yellowbrick.features.base.DataVisualizer

RadViz is a multivariate data visualization algorithm that plots each axis uniformely around the

circumference of a circle then plots points on the interior of the circle such that the point normalizes

its values on the axes from the center to each arc.

Parameters

ax [matplotlib Axes, default: None] The axis to plot the figure on. If None is passed in

the current axes will be used (or generated if required).

features [list, default: None| a list of feature names to use If a DataFrame is passed to

fit and features is None, feature names are selected as the columns of the DataFrame.

classes [list, default: None] a list of class names for the legend If classes is None and a

y value is passed to fit then the classes are selected from the target vector.

color [list or tuple, default: None| optional list or tuple of colors to colorize lines Use
either color to colorize the lines on a per class basis or colormap to color them on a

continuous scale.

colormap [string or cmap, default: None] optional string or matplotlib cmap to colorize
lines Use either color to colorize the lines on a per class basis or colormap to color

them on a continuous scale.

kwargs [dict] Keyword arguments that are passed to the base class and may influence

the visualization as defined in other Visualizers.

Notes

These parameters can be influenced later on in the visualization process, but can and should be set as

early as possible.

Examples

>>>

>>>

>>>

>>>

visualizer = RadViz()
visualizer.fit(X, y)
visualizer.transform(X)

visualizer.poof ()

40

Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

draw (X, y, **kwargs)
Called from the fit method, this method creates the radviz canvas and draws each instance as a

class or target colored point, whose location is determined by the feature data set.

finalize (**kwargs)
Finalize executes any subclass-specific axes finalization steps. The user calls poof and poof calls

finalize.
Parameters
kwargs: generic keyword arguments.

static normalize(X)

MinMax normalization to fit a matrix in the space [0,1] by column.

yellowbrick.features.radviz.RadViz

yellowbrick. features.radviz.RadialVisualizer W) 5|4

Rank Features

Rank1D and Rank2D evaluate single features or pairs of features using a variety of metrics that score the
features on the scale [-1, 1] or [0, 1] allowing them to be ranked. A similar concept to SPLOMs, the scores are
visualized on a lower-left triangle heatmap so that patterns between pairs of features can be easily discerned

for downstream analysis.

In this example, we’ll use the credit default data set from the UCI Machine Learning repository to rank

features. The code below creates our instance matrix and target vector.

Load the dataset
data = load_data('credit')

Specify the features of interest

features = [

1 1 1 1

sex', 'edu', 'married', '

'limit', age', 'apr_delay', 'may_delay',
'jun_delay', 'jul_delay', 'aug_delay', 'sep_delay', 'apr_bill', 'may_bill',
'jun_bill', 'jul_bill', 'aug_bill', 'sep_bill', 'apr_pay', 'may_pay', 'jun_pay'

'jul_pay', 'aug_pay', 'sep_pay',

Extract the numpy arrays from the data frame

data[features] .as_matrix()

data.default.as_matrix()

o
I

4.3. Visualizers and API 41

Yellowbrick Documentation, 445 v0.5

Rank 1D

A one dimensional ranking of features utilizes a ranking algorithm that takes into account only a single
feature at a time (e.g. histogram analysis). By default we utilize the Shapiro-Wilk algorithm to assess the
normality of the distribution of instances with respect to the feature. A barplot is then drawn showing the

relative ranks of each feature.

Instantiate the 1D wisualizer with the Sharpiro ranking algorithm

visualizer = RanklD(features=features, algorithm='shapiro')

visualizer.fit(X, y) # Fit the data to the visualizer
visualizer.transform(X) # Transform the data
visualizer.poof () # Draw/show/poof the data

iimit Shapiro Ranking of 23 Features
sEX

edu
married
age
apr_delay
may_delay
jun_delay
jul_delay
aug_delay
sep_delay
apr_bill
may_bill
jun_bill
jul_bill
aug_hill
sep_bill
apr_pay
may_pay
Jun_pay
Jul_pay
aug_pay
sep_pay

0.

(=1

0.2 0.4 0.6 08 1.0

Rank 2D

A two dimensional ranking of features utilizes a ranking algorithm that takes into account pairs of features
at a time (e.g. joint plot analysis). The pairs of features are then ranked by score and visualized using the

lower left triangle of a feature co-occurence matrix.

The default ranking algorithm is covariance, which attempts to compute the mean value of the product

42 Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

of deviations of variates from their respective means. Covariance loosely attempts to detect a colinear

relationship between features.

Instantiate the visualizer with the Covariance ranking algorithm

visualizer = Rank2D(features=features, algorithm='covariance')

visualizer.fit(X, y) # Fit the data to the visualizer
visualizer.transform(X) # Transform the data
visualizer.poof () # Draw/show/poof the data

Covariance Ranking of 23 Features
limit
sex
edu

married
age
apr_delay
may_delay
jun_delay
Jul_delay
aug_delay
sep_delay
apr_bill
may_bill
jun_bill
jul_bill
aug_bill
sep_bill
apr_pay
may_pay
jun_pay
Jul_pay
aug_pay
sep_pay

0.8

0.6

0.4

0.2

0.0

-0.2

0.4

0.6

-1.0

¥
Y
Y
y

apr_bill

R
‘3!3 =)

Alternatively we can utilize a linear correlation algorithm such as a Pearson score to similarly detect colinear

' dela
1 dela
jul_bill

ug_bill

| dela

Cdelag.r
v_dela

way_bill
Jun_bill
sep_bill
pr_pay
ay_pay
un_pay
jul_pay
ig_pay
3p_pay

relationships. Compare the output from Pearson below to the covariance ranking above.

Instantiate the visualizer with the Pearson ranking algorithm

visualizer = Rank2D(features=features, algorithm='pearson')

visualizer.fit(X, y) # Fit the data to the visualizer
visualizer.transform(X) # Transform the data
visualizer.poof () # Draw/show/poof the data

4.3. Visualizers and API 43

Yellowbrick Documentation, 445 v0.5

Pearson Ranking of 23 Features
limit
sex
edu 08
married
age 06
apr_delay
may_delay
jun_delay
jul_delay
aug_delay 02
sep_delay
apr_bill 00
may_bill
jun_bill 0o
jul_bill
aug_bill
sep_bill
apr_pay
may_pay 0.6
jun_pay
jul_pay 08
aug_pay
sep_pay

0.4

04

-1.0

¥y
¥
Y
¥y

|_dela

apr_bill
jul_bill
ug_bill

limit
sex
edu
mnarried
age

- delay
 dela
1 dela
|_delay
1_dela
way_bill
Jun_bill
sep_hill
pr_pay
ay_pay
un_pay
jul_pay
Ag_pay
sp_pay

API| Reference

Implements 1D (histograms) and 2D (joint plot) feature rankings.

class yellowbrick.features.rankd.Rank1D(az=None, algorithm="’shapiro’, features=None, ori-

ent="h’, show__feature_names=True, **kwargs)
FE: yellowbrick.features.rankd.RankDBase

Rank1D computes a score for each feature in the data set with a specific metric or algorithm (e.g.

Shapiro-Wilk) then returns the features ranked as a bar plot.
Parameters

ax [matplotlib Axes, default: None] The axis to plot the figure on. If None is passed in

the current axes will be used (or generated if required).

algorithm [one of {’shapiro’, }, default: ’shapiro’] The ranking algorithm to use, default
is ’Shapiro-Wilk.

features [list] A list of feature names to use. If a DataFrame is passed to fit and features

is None, feature names are selected as the columns of the DataFrame.

orient ['h’ or 'v’] Specifies a horizontal or vertical bar chart.

44 Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

show__feature__names [boolean, default: True] If True, the feature names are used

to label the x and y ticks in the plot.

kwargs [dict] Keyword arguments that are passed to the base class and may influence

the visualization as defined in other Visualizers.

Examples

>>> visualizer = Rank1D()
>>> visualizer.fit(X, y)
>>> visualizer.transform(X)

>>> visualizer.poof ()

Attributes
ranks__ [ndarray] An array of rank scores with shape (n,), where n is the number of
features. It is computed during fit.
draw (**kwargs)

Draws the bar plot of the ranking array of features.

ranking methods = {'shapiro': <function Rank1D.<lambda>>}

class yellowbrick.features.rankd.Rank2D (az=None, algorithm="pearson’, features=None,
colormap="RdBu_ 1, show__feature__names=True,
**Lwargs)

FE: yellowbrick.features.rankd.RankDBase

Rank2D performs pairwise comparisons of each feature in the data set with a specific metric or algo-

rithm (e.g. Pearson correlation) then returns them ranked as a lower left triangle diagram.
Parameters

ax [matplotlib Axes, default: None] The axis to plot the figure on. If None is passed in

the current axes will be used (or generated if required).

algorithm [one of {’pearson’, 'covariance’}, default: pearson’] The ranking algorithm

to use, default is Pearson correlation.

features [list] A list of feature names to use. If a DataFrame is passed to fit and features

is None, feature names are selected as the columns of the DataFrame.

colormap [string or cmap, default: 'RdBu_r’] optional string or matplotlib cmap to
colorize lines Use either color to colorize the lines on a per class basis or colormap

to color them on a continuous scale.

show__feature__names [boolean, default: True] If True, the feature names are used

to label the axis ticks in the plot.

4.3. Visualizers and API 45

Yellowbrick Documentation, 445 v0.5

kwargs [dict] Keyword arguments that are passed to the base class and may influence

the visualization as defined in other Visualizers.

Notes

These parameters can be influenced later on in the visualization process, but can and should be set as

early as possible.

Examples

>>> visualizer = Rank2D()
>>> visualizer.fit(X, y)

>>> yisualizer.transform(X)

>>> visualizer.poof ()

Attributes
ranks__ [ndarray] An array of rank scores with shape (n,n), where n is the number of
features. It is computed during fit.
draw (**kwargs)

Draws the heatmap of the ranking matrix of variables.

ranking methods = {'covariance': <function Rank2D.<lambda>>, 'pearson': <function Rank2D.<lambda>>

Parallel Coordinates

Parallel coordinates displays each feature as a vertical axis spaced evenly along the horizontal, and each
instance as a line drawn between each individual axis. This allows many dimensions; in fact given infinite

horizontal space (e.g. a scrollbar), an infinite number of dimensions can be displayed!

Data scientists use this method to detect clusters of instances that have similar classes, and to note features

that have high variance or different distributions.

Load the classification data set

data = load_data('occupancy')
Specify the features of interest and the classes of the target
features = ["temperature", "relative humidity", "light", "CO02", "humidity"]

classes = ['unoccupied', 'occupied']

Extract the numpy arrays from the data frame

(M ogksr)

46 Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

(% k)
X = data[features].as_matrix()
y = data.occupancy.as_matrix()
Instantiate the wvisualizer
visualizer = ParallelCoordinates(classes=classes, features=features)
visualizer.fit(X, y) # Fit the data to the visualizer
visualizer.transform(X) # Transform the data
visualizer.poof () # Draw/show/poof the data
Parallel Coordinates for 5 Features
occupied

2000 unoccupied

1500

1000

500

0
temperature relative humidity light coz humidity

Parallel coordinates can take a long time to draw since each instance is represented by a line for each feature.
Worse, this time is not well spent since a lot of overlap in the visualization makes the parallel coordinates
less understandable. To fix this, pass the sample keyword argument to the visualizer with a percentage to

randomly sample from the dataset.

Additionally the domain of each feature may make the visualization hard to interpret. In the above visu-
alization, the domain of the 1light feature is from in [0, 1600], far larger than the range of temperature
in [50, 96]. A normalization methodology can be applied to change the range of features to [0,1]. Try

using minmax, minabs, standard, 11, or 12 normalization to change perspectives in the parallel coordinates:

4.3. Visualizers and API a7

Yellowbrick Documentation, k&% v0.5

Instantiate the visualizer
visualizer = ParallelCoordinates(
classes=classes, features=features,

normalize='standard', sample=0.1,

visualizer.fit(X, y) # Fit the data to the visualizer
visualizer.transform(X) # Transform the data

visualizer.poof () # Draw/show/poof the data

Parallel Coordinates for 5 Features

occupied
unoccupied

temperature relative humidity light coz humidity

API| Reference

Implementations of parallel coordinates for multi-dimensional feature analysis. There are a variety of parallel

coordinates from Andrews Curves to coordinates that optimize column order.

class yellowbrick.features.pcoords.ParallelCoordinates(ax=DNone, features=None,
classes=None, normalize=None,
sample=1.0, color=None, col-
ormap=None, vlines=True,

vlines__kwds=None, **kwargs)

48 Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

H2Z: yellowbrick.features.base.DataVisualizer

Parallel coordinates displays each feature as a vertical axis spaced evenly along the horizontal, and

each instance as a line drawn between each individual axis.
Parameters

ax [matplotlib Axes, default: None] The axis to plot the figure on. If None is passed in

the current axes will be used (or generated if required).

features [list, default: None] a list of feature names to use If a DataFrame is passed to

fit and features is None, feature names are selected as the columns of the DataFrame.

classes [list, default: None| a list of class names for the legend If classes is None and a

y value is passed to fit then the classes are selected from the target vector.

normalize [string or None, default: None] specifies which normalization method to use,

if any Current supported options are 'minmax’, ‘maxabs’, 'standard’, ’11’, and ’12".

sample [float or int, default: 1.0] specifies how many examples to display from the
data If int, specifies the maximum number of samples to display. If float, specifies a

fraction between 0 and 1 to display.

color [list or tuple, default: None| optional list or tuple of colors to colorize lines Use
either color to colorize the lines on a per class basis or colormap to color them on a

continuous scale.

colormap [string or cmap, default: None] optional string or matplotlib cmap to colorize
lines Use either color to colorize the lines on a per class basis or colormap to color

them on a continuous scale.
vlines [boolean, default: True] flag to determine vertical line display

vlines__kwds [dict, default: None] options to style or display the vertical lines, default:

None

kwargs [dict] Keyword arguments that are passed to the base class and may influence

the visualization as defined in other Visualizers.

Notes

These parameters can be influenced later on in the visualization process, but can and should be set as

early as possible.

Examples

>>> visualizer = ParallelCoordinates()

>>> visualizer.fit(X, y)

(T gk%E)

4.3.

Visualizers and API 49

Yellowbrick Documentation, 445 v0.5

(8:EW)

>>> yisualizer.transform(X)

>>> visualizer.poof ()

draw (X, y, **kwargs)
Called from the fit method, this method creates the parallel coordinates canvas and draws each

instance and vertical lines on it.

finalize (**kwargs)
Finalize executes any subclass-specific axes finalization steps. The user calls poof and poof calls

finalize.
Parameters
kwargs: generic keyword arguments.

normalizers = {'11': Normalizer(copy=True, norm='11'), '12': Normalizer(copy=True, norm='12'), 'ma

PCA Projection

The PCA Decomposition visualizer utilizes principle component analysis to decompose high dimensional
data into two or three dimensions so that each instance can be plotted in a scatter plot. The use of PCA
means that the projected dataset can be analyzed along axes of principle variation and can be interpreted

to determine if spherical distance metrics can be utilized.

Load the classification data set

data = load_data('credit')

Specify the features of interest

features = [

' 1 1 1

sex', 'edu', 'married', '

'limit"', age', 'apr_delay', 'may_delay',
'jun_delay', 'jul_delay', 'aug_delay', 'sep_delay', 'apr_bill', 'may_bill',
'"jun_bill', 'jul_bill', 'aug_bill', 'sep_bill', 'apr_pay', 'may_pay', 'jun_pay',

'jul_pay', 'aug_pay', 'sep_pay',

Extract the numpy arrays from the data frame
X = data[features].as_matrix()

y = data.default.as_matrix()

visualizer = PCADecomposition(scale=True, center=False, col=y)
visualizer.fit_transform(X,y)

visualizer.poof ()

50 Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

Principal Component Plot

®
30
® °

o 0
S ®
=
[=]
(=N
=
& 10
=
(=N
'© []
£
@

0

-10

-5 0 5 10 15 20 75 30

Principal Component 1

The PCA projection can also be plotted in three dimensions to attempt to visualize more princple components

and get a better sense of the distribution in high dimensions.

visualizer = PCADecomposition(scale=True, center=False, col=y, proj_dim=3)
visualizer.fit_transform(X,y)

visualizer.poof ()

4.3. Visualizers and API 51

Yellowbrick Documentation, 445 v0.5

Principal Component Plot

[]
- 50 2
=
@
=N
. T 05§
»]
- 20 5
. a
. . - 102
1 &
- 30
o = 20 a“@
- & QO{\
-5 0 5 - - - 1 O‘{\
; e v N
Principl 5 . 0
MPonént 4 26 4 10 9%
API Reference
Decomposition based feature visualization with PCA.
scale=True, color=None,

class yellowbrick.features.pca.PCADecomposition(az=None,
proj_dim=2, colormap="RdBu’, **kwargs)

FE: yellowbrick.features.base.FeatureVisualizer

Produce a two or three dimensional principal component plot of the data array X projected onto it’s

largest sequential principal components. It is common practice to scale the data array X before applying

a PC decomposition. Variable scaling can be controlled using the scale argument.
Parameters

X [ndarray or DataFrame of shape n x m| A matrix of n instances with m features.

y [ndarray or Series of length n] An array or series of target or class values.

ax [matplotlib Axes, default: None] The axes to plot the figure on. If None is passed in

the current axes. will be used (or generated if required).

scale [bool, default: True] Boolean that indicates if user wants to scale data.

proj_ dim [int, default: 2] Dimension of the PCA visualizer.

52 Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

color [list or tuple of colors, default: None| Specify the colors for each individual class.

colormap [string or cmap, default: None] Optional string or matplotlib cmap to colorize
lines. Use either color to colorize the lines on a per class basis or colormap to color

them on a continuous scale.

kwargs [dict] Keyword arguments that are passed to the base class and may influence

the visualization as defined in other Visualizers.

Examples

>>> from sklearn import datasets

>>> iris = datasets.load_iris()

>>> X = iris.data

>>> y = iris.target

>>> params = {'scale': True, 'center': False, 'col': y}
>>> visualizer = PCADecomposition(**params)

>>> visualizer.fit(X)

>>> visualizer.transform(X)

>>> visualizer.poof ()

draw (**kwargs)
The fitting or transformation process usually calls draw (not the user). This function is imple-
mented for developers to hook into the matplotlib interface and to create an internal representation

of the data the visualizer was trained on in the form of a figure or axes.
Parameters
kwargs: dict generic keyword arguments.

finalize (**kwargs)

Finalize executes any subclass-specific axes finalization steps.
Parameters

kwargs: dict generic keyword arguments.

Notes

The user calls poof and poof calls finalize. Developers should implement visualizer-specific final-

ization methods like setting titles or axes labels, etc.

fit (X, y=None, **kwargs)
Fits a visualizer to data and is the primary entry point for producing a visualization. Visualizers

are Scikit-Learn Estimator objects, which learn from data in order to produce a visual analysis

4.3.

Visualizers and API 53

Yellowbrick Documentation, 445 v0.5

or diagnostic. They can do this either by fitting features related data or by fitting an underlying

model (or models) and visualizing their results.
Parameters
X [ndarray or DataFrame of shape n x m] A matrix of n instances with m features
v [ndarray or Series of length n] An array or series of target or class values

kwargs: dict Keyword arguments passed to the drawing functionality or to the
Scikit-Learn API. See visualizer specific details for how to use the kwargs to modify

the visualization or fitting process.
Returns
self [visualizer]| The fit method must always return self to support pipelines.

transform(X, y=None, **kwargs)
Primarily a pass-through to ensure that the feature visualizer will work in a pipeline setting. This

method can also call drawing methods in order to ensure that the visualization is constructed.

This method must return a numpy array with the same shape as X.

Feature Importances

The feature engineering process involves selecting the minimum required features to produce a valid model
because the more features a model contains, the more complex it is (and the more sparse the data), therefore
the more sensitive the model is to errors due to variance. A common approach to eliminating features is to
describe their relative importance to a model, then eliminate weak features or combinations of features and

re-evalute to see if the model fairs better during cross-validation.

Many model forms describe the underlying impact of features relative to each other. In Scikit-Learn, Decision
Tree models and ensembles of trees such as Random Forest, Gradient Boosting, and Ada Boost provide a
feature_importances_ attribute when fitted. The Yellowbrick FeatureImportances visualizer utilizes this
attribute to rank and plot relative importances. Let’s start with an example; first load a classification dataset

as follows:

Load the classification data set

data = load_data('occupancy')
Spectify the features of interest

features = [

"temperature", "relative humidity", "light", "CO02", "humidity"

Extract the instances and target

(T gk%E)

54 Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

(8 L)

>
I

data[features]

y = data.occupancy

Once the dataset has been loaded, we can create a new figure (this is optional, if an Axes isn’t specified,
Yellowbrick will use the current figure or create one). We can then fit a FeatureImportances visualizer

with a GradientBoostingClassifier to visualize the ranked features:

from sklearn.ensemble import GradientBoostingClassifier

from yellowbrick.features import FeatureImportances

Create a new matplotlid figure
fig = plt.figure()
ax = fig.add_subplot()

viz = FeatureImportances(GradientBoostingClassifier(), ax=ax)
viz.fit (X, y)
viz.poof ()

Feature Importances of 5 Features using GradientBoostingClassifier

light

relative humidity -

humidity

(=]

20 40 60 80 100
relative importance

The above figure shows the features ranked according to the explained variance each feature contributes to the

model. In this case the features are plotted against their relative importance, that is the percent importance of

4.3. Visualizers and API 55

Yellowbrick Documentation, 445 v0.5

the most important feature. The visualizer also contains features_ and feature_importances_ attributes

to get the ranked numeric values.

For models that do not support a feature_importances_ attribute, the FeatureImportances visualizer
will also draw a bar plot for the coef_ attribute that many linear models provide. First we start by loading

a regression dataset:

Load a regression data set

data = load_data('"concrete")

Specify the features of interest
features = [

'cement','slag','ash','water', 'splast', 'coarse','fine’', 'age’

Extract the instances and target
X = concrete[feats]

y = concrete.strength

When using a model with a coef_ attribute, it is better to set relative=False to draw the true magnitude
of the coefficient (which may be negative). We can also specify our own set of labels if the dataset does
not have column names or to print better titles. In the example below we title case our features for better

readability:

Create a mew figure
fig = plt.figure()
ax = fig.add_subplot()

Title case the feature for better display and create the visualizer
labels = list(map(lambda s: s.title(), features))

viz = FeatureImportances(Lasso(), ax=ax, labels=labels, relative=False)

Fit and show the feature importances
viz.fit (X, y)
viz.poof ()

56 Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

Feature Importances of 8 Features using Lasso

Splast

Cement

Slag
Ash
Fine

Coarse

-0.15 -0.10 -0.05 0.00 0.05 010 015 0.20
coefficient value

{If#: The interpretation of the importance of coeficients depends on the model; see the discussion below

for more details.

Discussion

Generalized linear models compute a predicted independent variable via the linear combination of an array
of coefficients with an array of dependent variables. GLMs are fit by modifying the coefficients so as to
minimize error and regularization techniques specify how the model modifies coefficients in relation to each
other. As a result, an opportunity presents itself: larger coefficients are necessarily "more informative”

because they contribute a greater weight to the final prediction in most cases.

Additionally we may say that instance features may also be more or less ”informative” depending on the

product of the instance feature value with the feature coefficient. This creates two possibilities:

1. We can compare models based on ranking of coefficients, such that a higher coefficient is "more infor-

mative”.

2. We can compare instances based on ranking of feature/coefficient products such that a higher product

is "more informative”.

4.3. Visualizers and API 57

Yellowbrick Documentation, 445 v0.5

In both cases, because the coefficient may be negative (indicating a strong negative correlation) we must
rank features by the absolute values of their coefficients. Visualizing a model or multiple models by most
informative feature is usually done via bar chart where the y-axis is the feature names and the x-axis is
numeric value of the coefficient such that the x-axis has both a positive and negative quadrant. The bigger

the size of the bar, the more informative that feature is.

This method may also be used for instances; but generally there are very many instances relative to the
number models being compared. Instead a heatmap grid is a better choice to inspect the influence of features
on individual instances. Here the grid is constructed such that the x-axis represents individual features, and
the y-axis represents individual instances. The color of each cell (an instance, feature pair) represents the
magnitude of the product of the instance value with the feature’s coefficient for a single model. Visual
inspection of this diagnostic may reveal a set of instances for which one feature is more predictive than

another; or other types of regions of information in the model itself.

API| Reference

Implementation of a feature importances visualizer. This visualizer sits in kind of a weird place since it is

technically a model scoring visualizer, but is generally used for feature engineering.

class yellowbrick.features.importances.FeatureImportances(model, ar=None, labels=None,
relative=True, absolute=Fulse,
zlabel=None, **kwargs)
J2J5: yellowbrick.base.ModelVisualizer
Displays the most informative features in a model by showing a bar chart of features ranked by their
importances. Although primarily a feature engineering mechanism, this visualizer requires a model

that has either a coef_ or feature_importances_ parameter after fit.
Parameters

model [Estimator] A Scikit-Learn estimator that learns feature importances. Must

support either coef_ or feature_importances_ parameters.

ax [matplotlib Axes, default: None] The axis to plot the figure on. If None is passed in

the current axes will be used (or generated if required).

labels [list, default: None] A list of feature names to use. If a DataFrame is passed to

fit and features is None, feature names are selected as the column names.

relative [bool, default: True] If true, the features are described by their relative impor-
tance as a percentage of the strongest feature component; otherwise the raw numeric

description of the feature importance is shown.

absolute [bool, default: False] Make all coeficients absolute to more easily compare

negative coeficients with positive ones.

xlabel [str, default: None] The label for the X-axis. If None is automatically determined

by the underlying model and options provided.

58 Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

kwargs [dict] Keyword arguments that are passed to the base class and may influence

the visualization as defined in other Visualizers.

Examples

>>> from sklearn.ensemble import GradientBoostingClassifier
>>> visualizer = FeatureImportances(GradientBoostingClassifier())

>>> visualizer.fit(X, y)

>>> visualizer.poof ()

Attributes
features__ [np.array] The feature labels ranked according to their importance
feature__importances__ [np.array] The numeric value of the feature importance com-
puted by the model
draw (**kwargs)

Draws the feature importances as a bar chart; called from fit.

finalize (**kwargs)

Finalize the drawing setting labels and title.

fit (X, y=None, **kwargs)
Fits the estimator to discover the feature importances described by the data, then draws those

importances as a bar plot.
Parameters
X [ndarray or DataFrame of shape n x m| A matrix of n instances with m features
y [ndarray or Series of length n] An array or series of target or class values
kwargs [dict] Keyword arguments passed to the fit method of the estimator.
Returns

self [visualizer] The fit method must always return self to support pipelines.

Direct Data Visualization

Sometimes for feature analysis you simply need a scatter plot to determine the distribution of data. Machine
learning operates on high dimensional data, so the number of dimensions has to be filtered. As a result these
visualizations are typically used as the base for larger visualizers; however you can also use them to quickly

plot data during ML analysis.

4.3. Visualizers and API 59

Yellowbrick Documentation, 445 v0.5

Scatter Visualization

A scatter visualizer simply plots two features against each other and colors the points according to the target.

This can be useful in assessing the relationship of pairs of features to an individual target.

Load the classification data set

data = load_data('occupancy')

Spectify the features of interest and the classes of the target
features = ["temperature", "relative humidity", "light", "CO02", "humidity"]

classes = ['unoccupied', 'occupied']

Extract the numpy arrays from the data frame
X = data[features]

y = data.occupancy

from yellowbrick.features import ScatterVisualizer
visualizer = ScatterVisualizer(x='light', y='C02', classes=classes)
visualizer.fit(X, y)

visualizer.transform(X)

visualizer.poof ()

60 Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

Scatter Plot: light vs C02

B unoccupied
occupied

2000
1750
1500
% 1250
1000

750

500

0 500 1000 1500 2000

Joint Plot Visualization

A joint plot visualizer plots a feature against the target and shows the distribution of each via a histogram

on each axis.

Load the data
df = load_data('concrete')
feature = 'cement'

target = 'strength'

Get the X and y data from the DataFrame
df [feature]
df [target]

< =
I]

visualizer = JointPlotVisualizer(feature=feature, target=target)

visualizer.fit(X, y)

visualizer.poof ()

4.3. Visualizers and API 61

Yellowbrick Documentation, k&% v0.5

50
=
o
3 40
7
30
20
10
0
100 200 300 400 500
cement

visualizer =

The joint plot visualizer can also be plotted with hexbins in the case of many, many points.

JointPlotVisualizer(

feature=feature, target=target, joint_plot='hex'
)

visualizer.fit(X, y)

visualizer.poof ()

62

Chapter 4. B

Yellowbrick Documentation, &% v0.5

o H{-}ﬂﬁ

o
®
®

B & &

150 200 250 300 350 400 450 500
cement

APl Reference

Implements a 2D scatter plot for feature analysis.

class yellowbrick.features.scatter.ScatterVisualizer (az=DNone, z=None, y=DNone,

features=None, classes=None,
color=None, colormap=None, mark-
ers=None, **kwargs)

H2: yellowbrick.features.base.DataVisualizer

ScatterVisualizer is a bivariate feature data visualization algorithm that plots using the Cartesian

coordinates of each point.

Parameters

4.3. Visualizers and API 63

Yellowbrick Documentation, 445 v0.5

ax [a matplotlib plot, default: None]

The axis to plot the figure on.

x [string, default: None| The feature name that corresponds to a column name or

index postion in the matrix that will be plotted against the x-axis

y [string, default: None] The feature name that corresponds to a column name or

index postion in the matrix that will be plotted against the y-axis

features [a list of two feature names to use, default: None| List of two features that
correspond to the columns in the array. The order of the two features correspond
to X and Y axes on the graph. More than two feature names or columns will raise
an error. If a DataFrame is passed to fit and features is None, feature names are

selected that are the columns of the DataFrame.

classes [a list of class names for the legend, default: None] If classes is None and a

y value is passed to fit then the classes are selected from the target vector.

color [optional list or tuple of colors to colorize points, default: None] Use either
color to colorize the points on a per class basis or colormap to color them on a

continuous scale.

colormap [optional string or matplotlib cmap to colorize points, default: None] Use
either color to colorize the points on a per class basis or colormap to color them

on a continuous scale.

markers [iterable of strings, default: ,4o0*vhd] Matplotlib style markers for points
on the scatter plot points

kwargs : keyword arguments passed to the super class.

These parameters can be influenced later on in the visualization process, but can

and should be set as early as possible.

draw (X, y, **kwargs)
Called from the fit method, this method creates a scatter plot that draws each instance as a class

or target colored point, whose location is determined by the feature data set.

finalize (**kwargs)
Finalize executes any subclass-specific axes finalization steps. The user calls poof and poof calls

finalize.
Parameters
kwargs: generic keyword arguments.

fit (X, y=None, **kwargs)
The fit method is the primary drawing input for the parallel coords visualization since it has both

the X and y data required for the viz and the transform method does not.

64 Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

Parameters
X [ndarray or DataFrame of shape n x m] A matrix of n instances with 2 features
y [ndarray or Series of length n] An array or series of target or class values
kwargs [dict] Pass generic arguments to the drawing method

Returns
self [instance] Returns the instance of the transformer/visualizer

class yellowbrick.features.jointplot.JointPlotVisualizer (az=None, feature=None, tar-

get=None, joint_plot="scatter’,
joint_args=None,
xy plot="hist’, xy_args=None,
size=600, ratio=5, space=0.2,
**kwargs)

%5’@ yellowbrick.features.base.FeatureVisualizer

JointPlotVisualizer allows for a simultaneous visualization of the relationship between two variables

and the distrbution of each individual variable. The relationship is plotted along the joint axis and

univariate distributions are plotted on top of the x axis and to the right of the y axis.
Parameters

ax: matplotlib Axes, default: None This is inherited from FeatureVisualizer but is

defined within JointPlotVisualizer since there are three axes objects.

feature: string, default: None The name of the X variable If a DataFrame is passed
to fit and feature is None, feature is selected as the column of the DataFrame. There

must be only one column in the DataFrame.

target: string, default: None The name of the Y variable If target is None and a y

value is passed to fit then the target is selected from the target vector.

joint__plot: one of {’scatter’, ’hex’}, default: ’scatter’ The type of plot to ren-
der in the joint axis Currently, the choices are scatter and hex. Use scatter for small

datasets and hex for large datasets

joint__args: dict, default: None Keyword arguments used for customizing the joint

plot:

4.3. Visualizers and API 65

Yellowbrick Documentation, 445 v0.5

Prop-| Description

erty

al- transparency

pha

face- | background color of the joint axis

color

as- aspect ratio

pect

fit used if scatter is selected for joint_ plot to draw a best fit line - values can

be True or False. Uses Yellowbrick.bestfit

esti- | used if scatter is selected for joint_ plot to determine the type of best fit
ma- | line to use. Refer to Yellowbrick.bestfit for types of estimators that can

tor be used.

x_ binsused if hex is selected to set the number of bins for the x value

y__binsused if hex is selected to set the number of bins for the y value

cmap| string or matplotlib cmap to colorize lines Use either color to colorize the

lines on a per class basis or colormap to color them on a continuous scale.

xy_ plot: one of {’hist’}, default: ’hist’ The type of plot to render along the x and

y axes Currently, the choice is hist

xy_ args: dict, default: None Keyword arguments used for customizing the x and y

plots:

Property Description

alpha transparency

facecolor_x | background color of the x axis

facecolor_y | background color of the y axis

bins used to set up the number of bins for the hist plot

histcolor_x | used to set the color for the histogram on the x axis

histcolor_y | used to set the color for the histogram on the y axis

size: float, default: 600 Size of each side of the figure in pixels
ratio: float, default: 5 Ratio of joint axis size to the x and y axes height
space: float, default: 0.2 Space between the joint axis and the x and y axes

kwargs [dict] Keyword arguments that are passed to the base class and may influence

the visualization as defined in other Visualizers.

66 Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

Notes

These parameters can be influenced later on in the visualization process, but can and should be set as

early as possible.

Examples

>>> vyisualizer = JointPlotVisualizer()
>>> visualizer.fit(X,y)

>>> visualizer.poof ()

draw (X, y, **kwargs)
Sets up the layout for the joint plot draw calls draw_joint and draw_xy to render the visualiza-

tions.

draw_joint (X, y, **kwargs)

Draws the visualization for the joint axis.

draw_xy (X, y, **kwargs)

Draws the visualization for the x and y axes

finalize (**kwargs)
Finalize executes any subclass-specific axes finalization steps. The user calls poof and poof calls

finalize.
Parameters
kwargs: generic keyword arguments.

fit (X, y, **kwargs)
Sets up the X and y variables for the jointplot and checks to ensure that X and y are of the correct
data type

Fit calls draw
Parameters
X [ndarray or DataFrame of shape n x 1] A matrix of n instances with 1 feature
y [ndarray or Series of length n] An array or series of the target value
kwargs: dict keyword arguments passed to Scikit-Learn API.

poof (**kwargs)

Creates the labels for the feature and target variables

4.3. Visualizers and API 67

Yellowbrick Documentation, 445 v0.5

4.3.4 Regression Visualizers

Regression models attempt to predict a target in a continuous space. Regressor score visualizers display
the instances in model space to better understand how the model is making predictions. We currently have

implemented three regressor evaluations:
e Residuals Plot: plot the difference between the expected and actual values
e Prediction Error Plot: plot the expected vs. actual values in model space
e Alpha Selection: visual tuning of regularization hyperparameters

Estimator score visualizers wrap Scikit-Learn estimators and expose the Estimator API such that they have
fit (), predict (), and score () methods that call the appropriate estimator methods under the hood. Score

visualizers can wrap an estimator and be passed in as the final step in a Pipeline or VisualPipeline.

Regression Evaluation Imports

from sklearn.linear_model import Ridge, Lasso

from sklearn.model_selection import train_test_split

from yellowbrick.regressor import PredictionError, ResidualsPlot

from yellowbrick.regressor.alphas import AlphaSelection

Residuals Plot

A residuals plot shows the residuals on the vertical axis and the independent variable on the horizontal axis.
If the points are randomly dispersed around the horizontal axis, a linear regression model is appropriate for

the data; otherwise, a non-linear model is more appropriate.

Load the data
df = load_data('concrete')
feature_names = ['cement', 'slag', 'ash', 'water', 'splast', 'coarse', 'fine', 'age']

target_name = 'strength'

Get the X and y data from the DataFrame
X = df [feature_names].as_matrix()

y = df [target_name] .as_matrix()

Create the train and test data

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

68 Chapter 4. B

Yellowbrick Documentation, &% v0.5

Instantiate the linear model and visualizer
ridge = Ridge()
visualizer = ResidualsPlot(ridge)

visualizer.fit(X_train, y_train) # Fit the training data to the visualizer

visualizer.score(X_test, y_test) # Evaluate the model on the test data

g = visualizer.poof () # Draw/show/poof the data

Residuals for Ridge Model

30 @ Training Data . - .
@ TestData ° P o® o © ?. i

Residuals

10 20 30 40 50 60 70 80
Predicted Value

APl Reference

Regressor visualizers that score residuals: prediction vs. actual data.

class yellowbrick.regressor.residuals.ResidualsPlot (model, ax=None, **kwargs)

HJE: yellowbrick.regressor.base.RegressionScoreVisualizer

A residual plot shows the residuals on the vertical axis and the independent variable on the horizontal
axis.
If the points are randomly dispersed around the horizontal axis, a linear regression model is appropriate

for the data; otherwise, a non-linear model is more appropriate.

Parameters

4.3. Visualizers and API 69

Yellowbrick Documentation, 445 v0.5

model [a Scikit-Learn regressor| Should be an instance of a regressor, otherwise a will

raise a YellowbrickTypeError exception on instantiation.

ax [matplotlib Axes, default: None] The axes to plot the figure on. If None is passed in

the current axes will be used (or generated if required).

train__color [color, default: 'b’] Residuals for training data are ploted with this color

but also given an opacity of 0.5 to ensure that the test data residuals are more visible.

Can be any matplotlib color.

test__color [color, default: ’g’| Residuals for test data are plotted with this color. In

order to create generalizable models, reserved test data residuals are

of the most

analytical interest, so these points are highlighted by hvaing full opacity. Can be

any matplotlib color.

line__color [color, default: dark grey] Defines the color of the zero error

any matplotlib color.

line, can be

kwargs [dict] Keyword arguments that are passed to the base class and may influence

the visualization as defined in other Visualizers.

Notes

ResidualsPlot is a ScoreVisualizer, meaning that it wraps a model and its primary entry point is the

score() method.

Examples

>>>

>>>

>>>

>>>

>>>

>>>

from yellowbrick.regressor import ResidualsPlot
from sklearn.linear_model import Ridge

model = ResidualsPlot(Ridge())
model.fit(X_train, y_train)

model.score(X_test, y_test)

model .poof ()

draw(y_pred, residuals, train=False, **kwargs)

Parameters

y__pred [ndarray or Series of length n] An array or series of predicted

target values

residuals [ndarray or Series of length n] An array or series of the difference between

the predicted and the target values

train [boolean] If False, draw assumes that the residual points being plotted are from

the test data; if True, draw assumes the residuals are the train data.

70

Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

Returns

ax [the axis with the plotted figure]

finalize (**kwargs)
Finalize executes any subclass-specific axes finalization steps. The user calls poof and poof calls

finalize.

Parameters

kwargs: generic keyword arguments.
fit (X, y=None, **kwargs)

Parameters
X [ndarray or DataFrame of shape n x m| A matrix of n instances with m features
y [ndarray or Series of length n] An array or series of target values
kwargs: keyword arguments passed to Scikit-Learn API.

score (X, y=None, train=False, **kwargs)

Generates predicted target values using the Scikit-Learn estimator.
Parameters
X [array-like] X (also X_test) are the dependent variables of test set to predict
y [array-like] y (also y__test) is the independent actual variables to score against

train [boolean| If False, score assumes that the residual points being plotted are

from the test data; if True, score assumes the residuals are the train data.

Returns

ax [the axis with the plotted figure]

Prediction Error Plot

A prediction error plot shows the actual targets from the dataset against the predicted values generated by
our model. This allows us to see how much variance is in the model. Data scientists can diagnose regression
models using this plot by comparing against the 45 degree line, where the prediction exactly matches the

model.

Load the data
df = load_data('concrete')

feature_names = ['cement', 'slag', 'ash', 'water', 'splast', 'coarse', 'fine', 'age']

(@E23)

4.3. Visualizers and API 71

Yellowbrick Documentation, %45 v0.5

(8 L)

target_name = 'strength'

Get the X and y data from the DataFrame
= df [feature_names] .as_matrix()

y = df [target_name] .as_matrix()

Create the train and test data

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

Instantiate the linear model and visualizer
lasso = Lasso()

visualizer = PredictionError(lasso)

visualizer.fit(X_train, y_train) # Fit the training data to the visualizer
visualizer.score(X_test, y_test) # Evaluate the model on the test data

g = visualizer.poof () # Draw/show/poof the data

Prediction Error for Lasso (r* = 0.638)

80 == bestfit v
— — identity ’

72 Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

API| Reference

Regressor visualizers that score residuals: prediction vs. actual data.

class yellowbrick.regressor.residuals.PredictionError (model, ar=None,
shared__limits=True, bestfit=True,
identity="True, **kwargs)
JJ5: yellowbrick.regressor.base.RegressionScoreVisualizer
The prediction error visualizer plots the actual targets from the dataset against the predicted values
generated by our model(s). This visualizer is used to dectect noise or heteroscedasticity along a range

of the target domain.
Parameters

model [a Scikit-Learn regressor| Should be an instance of a regressor, otherwise a will

raise a YellowbrickTypeError exception on instantiation.

ax [matplotlib Axes, default: None] The axes to plot the figure on. If None is passed in

the current axes will be used (or generated if required).

shared_ limits [bool, default: True] If shared limits is True, the range of the X and Y
axis limits will be identical, creating a square graphic with a true 45 degree line. In
this form, it is easier to diagnose under- or over- prediction, though the figure will
become more sparse. To localize points, set shared_ limits to False, but note that

this will distort the figure and should be accounted for during analysis.

besfit [bool, default: True] Draw a linear best fit line to estimate the correlation between
the predicted and measured value of the target variable. The color of the bestfit line

is determined by the line_color argument.

identity: bool, default: True Draw the 45 degree identity line, y=x in order to better
show the relationship or pattern of the residuals. E.g. to estimate if the model is
over- or under- estimating the given values. The color of the identity line is a muted

version of the 1ine_color argument.
point__color [color] Defines the color of the error points; can be any matplotlib color.
line__color [color] Defines the color of the best fit line; can be any matplotlib color.

kwargs [dict] Keyword arguments that are passed to the base class and may influence

the visualization as defined in other Visualizers.

Notes

PredictionError is a ScoreVisualizer, meaning that it wraps a model and its primary entry point is the
score() method.

4.3. Visualizers and API 73

Yellowbrick Documentation, 445 v0.5

Examples

>>> from yellowbrick.regressor import PredictionError
>>> from sklearn.linear_model import Lasso

>>> model = PredictionError(Lasso())

>>> model.fit(X_train, y_train)

>>> model.score(X_test, y_test)

>>> model.poof ()

draw(y, y_pred)
Parameters
y [ndarray or Series of length n] An array or series of target or class values
y_pred [ndarray or Series of length n] An array or series of predicted target values

Returns

ax [the axis with the plotted figure]

finalize (**kwargs)
Finalize executes any subclass-specific axes finalization steps. The user calls poof and poof calls

finalize.
Parameters
kwargs: generic keyword arguments.

score (X, y=None, **kwargs)
The score function is the hook for visual interaction. Pass in test data and the visualizer will
create predictions on the data and evaluate them with respect to the test values. The evaluation

will then be passed to draw() and the result of the estimator score will be returned.
Parameters
X [array-like] X (also X_ test) are the dependent variables of test set to predict
y [array-like] y (also y_ test) is the independent actual variables to score against
Returns

score [float]

Alpha Selection

Regularization is designed to penalize model complexity, therefore the higher the alpha, the less complex the

model, decreasing the error due to variance (overfit). Alphas that are too high on the other hand increase

74 Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

the error due to bias (underfit). It is important, therefore to choose an optimal alpha such that the error is

minimized in both directions.

The AlphaSelection Visualizer demonstrates how different values of alpha influence model selection during
the regularization of linear models. Generally speaking, alpha increases the affect of regularization, e.g. if
alpha is zero there is no regularization and the higher the alpha, the more the regularization parameter

influences the final model.

Load the data
df = load_data('concrete')
feature_names = ['cement', 'slag', 'ash', 'water', 'splast', 'coarse', 'fine', 'age'l

target_name = 'strength'

Get the X and y data from the DataFrame
X = df [feature_names].as_matrix()

y = df [target_name] .as_matrix()

Create the train and test data

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

Create a list of alphas to cross-validate against

alphas = np.logspace(-12, -0.5, 400)

Instantiate the linear model and visualizer
model = LassoCV(alphas=alphas)

visualizer = AlphaSelection(model)

visualizer.fit(X_train, y_train) # Fit the training data to the visualizer

g = visualizer.poof () # Draw/show/poof the data

4.3. Visualizers and API 75

Yellowbrick Documentation, 445 v0.5

+1.115e2 LassoCV Alpha Error

0.0750

0.0725

0.0700

0.0675

or score)

= 0.0850

r

Erro

0.0625

0.0600

0.0575

0.00 0.05 0.10 015 020 025 0.30
alpha

API| Reference

Implements alpha selection visualizers for regularization

class yellowbrick.regressor.alphas.AlphaSelection(model, az=None, **kwargs)

Hk: yellowbrick.regressor.base.RegressionScoreVisualizer

The Alpha Selection Visualizer demonstrates how different values of alpha influence model selection
during the regularization of linear models. Generally speaking, alpha increases the affect of regulariza-
tion, e.g. if alpha is zero there is no regularization and the higher the alpha, the more the regularization

parameter influences the final model.

Regularization is designed to penalize model complexity, therefore the higher the alpha, the less complex
the model, decreasing the error due to variance (overfit). Alphas that are too high on the other hand
increase the error due to bias (underfit). It is important, therefore to choose an optimal Alpha such

that the error is minimized in both directions.

To do this, typically you would you use one of the "RegressionCV” models in Scikit-Learn. E.g.
instead of using the Ridge (L2) regularizer, you can use RidgeCV and pass a list of alphas, which will
be selected based on the cross-validation score of each alpha. This visualizer wraps a "RegressionCV”
model and visualizes the alpha/error curve. Use this visualization to detect if the model is responding

to regularization, e.g. as you increase or decrease alpha, the model responds and error is decreased.

76

Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

If the visualization shows a jagged or random plot, then potentially the model is not sensitive to that

type of regularization and another is required (e.g. L1 or Lasso regularization).
Parameters

model [a Scikit-Learn regressor| Should be an instance of a regressor, and specifically
one whose name ends with "CV” otherwise a will raise a YellowbrickTypeError

exception on instantiation. To use non-CV regressors see: ManualAlphaSelection.

ax [matplotlib Axes, default: None] The axes to plot the figure on. If None is passed in

the current axes will be used (or generated if required).

kwargs [dict] Keyword arguments that are passed to the base class and may influence

the visualization as defined in other Visualizers.

Notes

This class expects an estimator whose name ends with "CV”. If you wish to use some other estimator,
please see the ManualAlphaSelection Visualizer for manually iterating through all alphas and selecting

the best one.

This Visualizer hoooks into the Scikit-Learn API during £it (). In order to pass a fitted model to the

Visualizer, call the draw() method directly after instantiating the visualizer with the fitted model.

Note, each "RegressorCV” module has many different methods for storing alphas and error. This
visualizer attempts to get them all and is known to work for RidgeCV, LassoCV, LassoLarsCV, and

ElasticNetCV. If your favorite regularization method doesn’t work, please submit a bug report.

For RidgeCV, make sure store_cv_values=True.

Examples

>>> from yellowbrick.regressor import AlphaSelection
>>> from sklearn.linear_model import LassoCV

>>> model = AlphaSelection(LassoCV())

>>> model.fit(X, y)

>>> model.poof ()

draw()

Draws the alpha plot based on the values on the estimator.

finalize()
Prepare the figure for rendering by setting the title as well as the X and Y axis labels and adding
the legend.

fit (X, y, **kwargs)

A simple pass-through method; calls fit on the estimator and then draws the alpha-error plot.

4.3. Visualizers and API 77

Yellowbrick Documentation, 445 v0.5

class yellowbrick.regressor.alphas.ManualAlphaSelection(model, az=None, alphas=None,

cv=None, scoring=None,
**kwargs)

HIs: yellowdbrick.regressor.alphas.AlphaSelection

The AlphaSelection visualizer requires a "RegressorCV”, that is a specialized class that performs

cross-validated alpha-selection on behalf of the model. If the regressor you wish to use doesn’t have an

associated "CV” estimator, or for some reason you would like to specify more control over the alpha

selection process, then you can use this manual alpha selection visualizer, which is essentially a wrapper

for cross_val_score, fitting a model for each alpha specified.
Parameters

model [a Scikit-Learn regressor] Should be an instance of a regressor, and specifically
one whose name doesn’t end with "CV”. The regressor must support a call to
set_params (alpha=alpha) and be fit multiple times. If the regressor name ends

with CV” a YellowbrickValueError is raised.

ax [matplotlib Axes, default: None] The axes to plot the figure on. If None is passed in

the current axes will be used (or generated if required).

alphas [ndarray or Series, default: np.logspace(-10, 2, 200)] An array of alphas to fit

each model with

cv [int, cross-validation generator or an iterable, optional] Determines the cross-

validation splitting strategy. Possible inputs for cv are:

e None, to use the default 3-fold cross validation,

o integer, to specify the number of folds in a (Stratified)KFold,
e An object to be used as a cross-validation generator.

e An iterable yielding train, test splits.

This argument is passed to the sklearn.model_selection.cross_val_score

method to produce the cross validated score for each alpha.

scoring [string, callable or None, optional, default: None] A string (see model
evaluation documentation) or a scorer callable object / function with signature

scorer (estimator, X, y).

This argument is passed to the sklearn.model_selection.cross_val_score

method to produce the cross validated score for each alpha.

kwargs [dict] Keyword arguments that are passed to the base class and may influence

the visualization as defined in other Visualizers.

78 Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

Notes

This class does not take advantage of estimator-specific searching and is therefore less optimal and

more time consuming than the regular "RegressorCV” estimators.

Examples

>>> from yellowbrick.regressor import ManualAlphaSelection
>>> from sklearn.linear_model import Ridge
>>> model = ManualAlphaSelection(

Ridge(), cv=12, scoring='neg_mean_squared_error'

>>> model.fit (X, y)
>>> model.poof ()

draw()
Draws the alphas values against their associated error in a similar fashion to the AlphaSelection

visualizer.

fit (X, y, **args)
The fit method is the primary entry point for the manual alpha selection visualizer. It sets
the alpha param for each alpha in the alphas list on the wrapped estimator, then scores the
model using the passed in X and y data set. Those scores are then aggregated and drawn using

matplotlib.

4.3.5 Classification Visualizers

Classification models attempt to predict a target in a discrete space, that is assign an instance of dependent
variables one or more categories. Classification score visualizers display the differences between classes as
well as a number of classifier-specific visual evaluations. We currently have implemented four classifier

evaluations:
e Classification Report: Presents the classification report of the classifier as a heatmap
o Confusion Matriz: Presents the confusion matrix of the classifier as a heatmap
e ROCAUC: Presents the graph of receiver operating characteristics along with area under the curve
e C(lass Balance: Displays the difference between the class balances and support
e Threshold: Shows the bounds of precision, recall and queue rate after a number of trials.

Estimator score visualizers wrap Scikit-Learn estimators and expose the Estimator API such that they have
fit(), predict(), and score() methods that call the appropriate estimator methods under the hood. Score

visualizers can wrap an estimator and be passed in as the final step in a Pipeline or VisualPipeline.

4.3. Visualizers and API 79

Yellowbrick Documentation, 445 v0.5

Classifier Evaluation Imports

from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import train_test_split

from yellowbrick.classifier import ClassificationReport, ROCAUC, ClassBalance,
—ThresholdViz

Classification Report

The classification report visualizer displays the precision, recall, and F1 scores for the model. In order to
support easier interpretation and problem detection, the report integrates numerical scores with a color-coded

heatmap.

Load the classification data set

data = load_data('occupancy')
Specify the features of interest and the classes of the target
features = ["temperature", "relative humidity", "light", "CO02", ”humidity"]

classes = ['unoccupied', 'occupied']

Extract the numpy arrays from the data frame

data[features] .as_matrix()

data.occupancy.as_matrix()

<
]

Create the train and test data

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

Instantiate the classification model and visualizer
bayes = GaussianNB()

visualizer = ClassificationReport(bayes, classes=classes)

visualizer.fit(X_train, y_train) # Fit the training data to the visualizer
visualizer.score(X_test, y_test) # Evaluate the model on the test data

g = visualizer.poof () # Draw/show/poof the data

80 Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

GaussianNB Classification Report

unoccupied

Classes

occupied

API| Reference

Visual classification report for classifier scoring.

class yellowbrick.classifier.classification_report.ClassificationReport (model,
ar=None,

classes=None,
**kwargs)
H2Z: yellowbrick.classifier.base.ClassificationScoreVisualizer

Classification report that shows the precision, recall, and F1 scores for the model. Integrates numerical

scores as well as a color-coded heatmap.

Parameters
ax [The axis to plot the figure on.]
model [the Scikit-Learn estimator] Should be an instance of a classifier, else the
~_init_ will return an error.
classes [a list of class names for the legend] If classes is None and a y value is passed

to fit then the classes are selected from the target vector.

colormap [optional string or matplotlib cmap to colorize lines] Use sequential heatmap.

4.3. Visualizers and API 81

Yellowbrick Documentation, 445 v0.5

kwargs [keyword arguments passed to the super class.]

Examples

>>> from yellowbrick.classifier import ClassificationReport
>>> from sklearn.linear_model import LogisticRegression
>>> viz = ClassificationReport(LogisticRegression())

>>> viz.fit(X_train, y_train)

>>> viz.score(X_test, y_test)

>>> viz.poof ()

draw(y, y_pred)

Renders the classification report across each axis.
Parameters
y [ndarray or Series of length n] An array or series of target or class values
y_pred [ndarray or Series of length n] An array or series of predicted target values

finalize (**kwargs)
Finalize executes any subclass-specific axes finalization steps. The user calls poof and poof calls

finalize.
Parameters
kwargs: generic keyword arguments.

score (X, y=None, **kwargs)

Generates the Scikit-Learn classification_ report
Parameters
X [ndarray or DataFrame of shape n x m] A matrix of n instances with m features

y [ndarray or Series of length n] An array or series of target or class values

Confusion Matrix

The ConfusionMatrix visualizer is a ScoreVisualizer that takes a fitted Scikit-Learn classifier and a set of
test X and y values and returns a report showing how each of the test values predicted classes compare
to their actual classes. Data scientists use confusion matrices to understand which classes are most easily
confused. These provide similar information as what is available in a ClassificationReport, but rather than

top-level scores they provide deeper insight into the classification of individual data points.

Below are a few examples of using the ConfusionMatrix visualizer; more information can be found by looking

at the Scikit-Learn documentation on confusion matrices.

82 Chapter 4. B

http://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html

Yellowbrick Documentation, & %5 v0.5

#First do our imports

import yellowbrick
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

from yellowbrick.classifier import ConfusionMatrix

We'll use the handwritten digits data set from scikit-learn.

Each feature of this dataset ts an 8z8 pizel image of a handwritten number.
Digits.data converts these 64 pizels into a single array of features
digits = load_digits()

X = digits.data

y = digits.target

X_train, X_test, y_train, y_test = train_test_split(X,y, test_size =0.2, random_state=11)

model = LogisticRegression()

#The ConfusionMatriz visualizer taxzes a model

cm = ConfusionMatrix(model, classes=[0,1,2,3,4,5,6,7,8,9])

#Fit fits the passed model. This ©s unnecessary if you pass the visualizer a pre-fitted,
—model

cm.fit(X_train, y_train)

#To create the ConfustionMatriz, we need some test data. Score runs predict() on the data
#and then creates the confuston_matrixz from sctkit learn.

cm.score(X_test, y_test)

#How did we do?
cm.poof ()

4.3. Visualizers and API 83

Yellowbrick Documentation, 445 v0.5

LogisticRegression Confusion Matrix

o IR
1 &%
2 100%
3 4% &%
i
@ 4 %
Q
m E o
2 5 100%
'_
6 a5 97%
7 97 % 3
8 5 M
9 % % 5
[=] — (] L] uwy w [[-=] [=+]

-
Predicted Class

API| Reference

Visual confusion matrix for classifier scoring.

class yellowbrick.classifier.confusion_matrix.ConfusionMatrix(model, ax=None,
classes=None, la-
bel _encoder=None,
**kwargs)
ke yellowbrick.classifier.base.ClassificationScoreVisualizer
Creates a heatmap visualization of the sklearn.metrics.confusion_matrix(). A confusion matrix shows

each combination of the true and predicted classes for a test data set.

The default color map uses a yellow/orange/red color scale. The user can choose between displaying
values as the percent of true (cell value divided by sum of row) or as direct counts. If percent of true

mode is selected, 100% accurate predictions are highlighted in green.
Requires a classification model
Parameters

model [the Scikit-Learn estimator] Should be an instance of a classifier or init

will return an error.

84 Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

ax [the matplotlib axis to plot the figure on (if None, a new axis will be created)]

classes [list, default: None] a list of class names to use in the confusion matrix. This is
passed to the ’labels’ parameter of sklearn.metrics.confusion_matrix(), and follows
the behaviour indicated by that function. It may be used to reorder or select a subset
of labels. If None, values that appear at least once in y_ true or y_ pred are used in

sorted order.

label encoder [dict or LabelEncoder, default: None] When specifying the classes
argument, the input to £it () and score () must match the expected labels. If the X
and y datasets have been encoded prior to training and the labels must be preserved
for the visualization, use this argument to provide a mapping from the encoded
class to the correct label. Because typically a Scikit-Learn LabelEncoder is used to
perform this operation, you may provide it directly to the class to utilize its fitted

encoding.

Examples

>>> from yellowbrick.classifier import ConfusionMatrix
>>> from sklearn.linear_model import LogisticRegression
>>> viz = ConfusionMatrix(LogisticRegression())

>>> viz.fit(X_train, y_train)

>>> viz.score(X_test, y_test)

>>> viz.poof ()

draw (percent="True)
Renders the classification report Should only be called internally, as it uses values calculated in

Score and score calls this method.
Parameters

percent: Boolean Whether the heatmap should represent "% of True” or raw

counts

finalize (**kwargs)

Finalize executes any subclass-specific axes finalization steps.
Parameters

kwargs: dict generic keyword arguments.

Notes

The user calls poof and poof calls finalize. Developers should implement visualizer-specific final-

ization methods like setting titles or axes labels, etc.

4.3. Visualizers and API 85

Yellowbrick Documentation, 445 v0.5

score (X, y, sample_weight=None, percent="True)

ROCAUC

Generates the Scikit-Learn confusion_ matrix and applies this to the appropriate axis
Parameters
X [ndarray or DataFrame of shape n x m] A matrix of n instances with m features
v [ndarray or Series of length n] An array or series of target or class values
sample__weight: optional, passed to the confusion_ matrix

percent: optional, Boolean. Determines whether or not the confusion_ matrix
should be displayed as raw numbers or as a percent of the true predictions. Note, if
using a subset of classes in ___init__ | percent should be set to False or inaccurate

percents will be displayed.

A ROCAUC (Receiver Operating Characteristic/ Area Under the Curve) plot allows the user to visualize the

tradeoff between the classifier’s sensitivity and specificity.

Load the classification data set

data = load_data('occupancy')

Spectify the features of interest and the classes of the target

features

classes = ['unoccupied', 'occupied']

Extract the numpy arrays from the data frame

< =
I I

Create

X_train,

data[features] .as_matrix()

data.

= ["temperature", "relative humidity", "light", "CO02", "humidity"]

occupancy.as_matrix()

the tratn and test data

X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

Instantiate the classification model and visualizer

logistic

visualizer = ROCAUC(logistic)

visualizer.fit(X_train, y_train) # Fit the training data to the visualizer
visualizer.score(X_test, y_test) # Evaluate the model on the test data

g = visualizer.poof () # Draw/show/poof the data

= LogisticRegression()

86

Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

ROC Curves for LogisticRegression

0.8

06

04

True Postive Rate

02 . _—

0.0 0.2 0.4

ROC of class 0, AUC =0.99

ROC of class 1, AUC =0.99

0.6

False Positive Rate

API| Reference

Implements visual ROC/AUC curves for classification evaluation.

class yellowbrick.classifier.rocauc.ROCAUC(model,

ar=None,

08

classes=None,

- micro-average ROC curve, AUC =1.00
- macro-average ROC curve, AUC =0.99

1.0

micro="True,

macro="True, per__class=True, **kwargs)
Fe yellowbrick.classifier.base.ClassificationScoreVisualizer

Receiver Operating Characteristic (ROC) curves are a measure of a classifier’s predictive quality that

compares and visualizes the tradeoff between the models’ sensitivity and specificity. The ROC curve

displays the true positive rate on the Y axis and the false positive rate on the X axis on both a global

average and per-class basis. The ideal point is therefore the top-left corner of the plot: false positives

are zero and true positives are one.

This leads to another metric, area under the curve (AUC), a computation of the relationship between

false positives and true positives. The higher the AUC, the better the model generally is. However,

it is also important to inspect the ”steepness” of the curve, as this describes the maximization of the

true positive rate while minimizing the false positive rate. Generalizing "steepness” usually leads to

discussions about convexity, which we do not get into here.

Parameters

ax [the axis to plot the figure on.]

4.3. Visualizers and API

87

Yellowbrick Documentation, 445 v0.5

model [the Scikit-Learn estimator] Should be an instance of a classifier, else the

init will return an error.

classes [list] A list of class names for the legend. If classes is None and a y value is passed
to fit then the classes are selected from the target vector. Note that the curves must
be computed based on what is in the target vector passed to the score() method.
Class names are used for labeling only and must be in the correct order to prevent

confusion.

micro [bool, default = True] Plot the micro-averages ROC curve, computed from the

sum of all true positives and false positives across all classes.

macro [bool, default = True] Plot the macro-averages ROC curve, which simply takes

the average of curves across all classes.

per__class [bool, default = True| Plot the ROC curves for each individual class. Pri-

marily this is set to false if only the macro or micro average curves are required.

kwargs [keyword arguments passed to the super class.] Currently passing in hard-coded
colors for the Receiver Operating Characteristic curve and the diagonal. These will

be refactored to a default Yellowbrick style.

Notes

ROC curves are typically used in binary classification, and in fact the Scikit-Learn roc_curve metric
is only able to perform metrics for binary classifiers. As a result it is necessary to binarize the output
or to use one-vs-rest or one-vs-all strategies of classification. The visualizer does its best to handle

multiple situations, but exceptions can arise from unexpected models or outputs.

Another important point is the relationship of class labels specified on initialization to those drawn
on the curves. The classes are not used to constrain ordering or filter curves; the ROC computation
happens on the unique values specified in the target vector to the score method. To ensure the best

quality visualization, do not use a LabelEncoder for this and do not pass in class labels.

S U

http://scikit-learn.org/stable/auto__examples/model selection/plot_ roc.html

Examples

>>> from sklearn.datasets import load_breast_cancer

>>> from yellowbrick.classifier import ROCAUC

>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.model_selection import train_test_split

>>> data = load_breast_cancer()

(T D)

88

Chapter 4. B

http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html

Yellowbrick Documentation, & %5 v0.5

(8:EW)

>>> X

data['data']
>>> y = datal'target']

>>> X_train, X_test, y_train, y_test = train_test_split(X, y)
>>> viz = ROCAUC(LogisticRegression())

>>> viz.fit(X_train, y_train)

>>> viz.score(X_test, y_test)

>>> viz.poof ()

draw()
Renders ROC-AUC plot. Called internally by score, possibly more than once

Returns
ax [the axis with the plotted figure]

finalize (**kwargs)
Finalize executes any subclass-specific axes finalization steps. The user calls poof and poof calls

finalize.
Parameters
kwargs: generic keyword arguments.

score (X, y=None, **kwargs)

Generates the predicted target values using the Scikit-Learn estimator.
Parameters
X [ndarray or DataFrame of shape n x m| A matrix of n instances with m features
y [ndarray or Series of length n] An array or series of target or class values
Returns

score [float] The micro-average area under the curve of all classes.

Class Balance

Oftentimes classifiers perform badly because of a class imbalance. A class balance chart can help prepare

the user for such a case by showing the support for each class in the fitted classification model.

Load the classification data set

data = load_data('occupancy')

Specify the features of interest and the classes of the target
features = ["temperature", "relative humidity", "light", "CO02", "humidity"]

classes = ['unoccupied', 'occupied']

(T gk%E)

4.3. Visualizers and API 89

Yellowbrick Documentation, %45 v0.5

(8 L)

Extract the numpy arrays from the data frame

>
]

data[features] .as_matrix()

data.occupancy.as_matrix()

<
I

Create the train and test data

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

Instantiate the classification model and visualizer
forest = RandomForestClassifier()

visualizer = ClassBalance(forest, classes=classes)

visualizer.fit(X_train, y_train) # Fit the training data to the visualizer
visualizer.score(X_test, y_test) # Evaluate the model on the test data

g = visualizer.poof () # Draw/show/poof the data

Class Balance for RandomForestClassifier
3500

3000

2500

2000

1500

1000

500

unoccupied occupied

90 Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

API| Reference

Class balance visualizer for showing per-class support.

class yellowbrick.classifier.class_balance.ClassBalance(model, az=None, classes=None,

**kwargs)
IS yellowbrick.classifier.base.ClassificationScoreVisualizer

Class balance chart that shows the support for each class in the fitted classification model displayed

as a bar plot. It is initialized with a fitted model and generates a class balance chart on draw.
Parameters
ax: axes the axis to plot the figure on.

model: estimator Scikit-Learn estimator object. Should be an instance of a classifier,

else __init__ () will raise an exception.

classes: list A list of class names for the legend. If classes is None and a y value is

passed to fit then the classes are selected from the target vector.

kwargs: dict Keyword arguments passed to the super class. Here, used to colorize the

bars in the histogram.

Notes
These parameters can be influenced later on in the visualization process, but can and should be set as
early as possible.

draw()

Renders the class balance chart across the axis.
Returns
ax [the axis with the plotted figure]

finalize (**kwargs)
Finalize executes any subclass-specific axes finalization steps. The user calls poof and poof calls

finalize.
Parameters
kwargs: generic keyword arguments.

score (X, y=None, **kwargs)

Generates the Scikit-Learn precision_ recall fscore_ support
Parameters
X [ndarray or DataFrame of shape n x m] A matrix of n instances with m features

y [ndarray or Series of length n] An array or series of target or class values

4.3. Visualizers and API 91

Yellowbrick Documentation, 445 v0.5

Returns

ax [the axis with the plotted figure]

Threshold

The Threshold visualizer shows the bounds of precision, recall and queue rate for different thresholds for

binary targets after a given number of trials.

Load the data set
data = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/spambase/
—spambase.data', header=None)

data.rename (columns={57:'is_spam'}, inplace=True)
features = [col for col in data.columns if col != 'is_spam']
Extract the numpy arrays from the data frame

X = data[features].as_matrix()

y = data.is_spam.as_matrix()

Instantiate the classification model and visualizer
logistic = LogisticRegression()

visualizer = ThreshViz(logistic)

visualizer.fit(X, y) # Fit the training data to the visualizer

g = visualizer.poof() # Draw/show/poof the data

92 Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

Threshaold Plot of Binary Classifier

1.0
08
06
€
8
[14)
[=%
04
02
—— precision
— recall
00 —— queue_rate
0.0 02 04 06 0.8 1.0

threshold

API| Reference

yellowbrick.classifier.threshold.ThreshViz
yellowbrick.classifier.threshold.ThresholdVisualizer i) 5144

4.3.6 Clustering Visualizers

Clustering models are unsupervised methods that attempt to detect patterns in unlabeled data. There
are two primary classes of clustering algorithm: agglomerative clustering links similar data points together,
whereas centroidal clustering attempts to find centers or partitions in the data. Yellowbrick provides the
yellowbrick. cluster module to visualize and evaluate clustering behavior. Currently we provide two visualizers
to evaluate centroidal mechanisms, particularly K-Means clustering, that help us to discover an optimal K

parameter in the clustering metric:

e FElbow Method: visualize the clusters according to some scoring function, look for an ”elbow” in the

curve.
e Silhouette Visualizer: visualize the silhouette scores of each cluster in a single model.

Because it is very difficult to score a clustering model, Yellowbrick visualizers wrap Scikit-Learn ”clusterer”

estimators via their fit() method. Once the clustering model is trained, then the visualizer can call poof() to

4.3. Visualizers and API 93

Yellowbrick Documentation, 445 v0.5

display the clustering evaluation metric.

Elbow Method

The elbow method for K selection visualizes multiple clustering models with different values for K. Model
selection is based on whether or not there is an ”elbow” in the curve; e.g. if the curve looks like an arm, if

there is a clear change in angle from one part of the curve to another.

Make 8 blobs dataset
X, y = make_blobs(centers=8)

Instantiate the clustering model and visualizer

visualizer = KElbowVisualizer (MiniBatchKMeans(), k=(4,12))

visualizer.fit(X) # Fit the training data to the visualizer

visualizer.poof() # Draw/show/poof the data

Distortion Score Elbow for MiniBatchKMeans Clustering

500

distortion score
g8 8 §

a2
[43]
=

=
=

150

100

94 Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

API| Reference

Implements the elbow method for determining the optimal number of clusters. https://bl.ocks.org/rpgove/
0060{f3b656618e¢9136b

class yellowbrick.cluster.elbow.KElbowVisualizer (model, ax=None, k=10, met-
ric="distortion’, timings="True, **kwargs)

FJ5: yellowbrick.cluster.base.ClusteringScoreVisualizer

The K-Elbow Visualizer implements the "elbow” method of selecting the optimal number of clusters for
K-means clustering. K-means is a simple unsupervised machine learning algorithm that groups data
into a specified number (k) of clusters. Because the user must specify in advance what k to choose,
the algorithm is somewhat naive — it assigns all members to k clusters even if that is not the right k
for the dataset.

The elbow method runs k-means clustering on the dataset for a range of values for k (say from 1-10) and
then for each value of k computes an average score for all clusters. By default, the distortion_score
is computed, the sum of square distances from each point to its assigned center. Other metrics can
also be used such as the silhouette_score, the mean silhouette coefficient for all samples or the

calinski_harabaz_score, which computes the ratio of dispersion between and within clusters.

When these overall metrics for each model are plotted, it is possible to visually determine the best
value for K. If the line chart looks like an arm, then the "elbow” (the point of inflection on the curve)
is the best value of k. The "arm” can be either up or down, but if there is a strong inflection point, it

is a good indication that the underlying model fits best at that point.
Parameters

model [a Scikit-Learn clusterer] Should be an instance of a clusterer, specifically KMeans

or MiniBatchKMeans. If it is not a clusterer, an exception is raised.

ax [matplotlib Axes, default: None] The axes to plot the figure on. If None is passed in

the current axes will be used (or generated if required).

k [integer or tuple] The range of k to compute silhouette scores for. If a single integer
is specified, then will compute the range (2,k) otherwise the specified range in the

tuple is used.

metric [string, default: "distortion"] Select the scoring metric to evaluate the clus-
ters. The default is the mean distortion, defined by the sum of squared distances

between each observation and its closest centroid. Other metrics include:
o distortion: mean sum of squared distances to centers

e silhouette: mean ratio of intra-cluster and nearest-cluster distance

o calinski__harabaz: ratio of within to between cluster dispersion

timings [bool, default: True] Display the fitting time per k to evaluate the amount of

time required to train the clustering model.

4.3. Visualizers and API 95

https://bl.ocks.org/rpgove/0060ff3b656618e9136b
https://bl.ocks.org/rpgove/0060ff3b656618e9136b

Yellowbrick Documentation, 445 v0.5

kwargs [dict] Keyword arguments that are passed to the base class and may influence

the visualization as defined in other Visualizers.

Notes

If you get a visualizer that doesn’t have an elbow or inflection point, then this method may not be
working. The elbow method does not work well if the data is not very clustered; in this case you might
see a smooth curve and the value of k is unclear. Other scoring methods such as BIC or SSE also can

be used to explore if clustering is a correct choice.

For a discussion on the Elbow method, read more at Robert Gove’s Block.

Examples

>>> from yellowbrick.cluster import KElbowVisualizer
>>> from sklearn.cluster import KMeans

>>> model = KElbowVisualizer(KMeans(), k=10)

>>> model.fit(X)

>>> model.poof ()

draw()

Draw the elbow curve for the specified scores and values of K.

finalize()
Prepare the figure for rendering by setting the title as well as the X and Y axis labels and adding
the legend.

fit (X, y=None, **kwargs)
Fits n KMeans models where n is the length of self.k_values_, storing the silhoutte scores in

the self.k_scores_ attribute. This method finishes up by calling draw to create the plot.

Silhouette Visualizer

The Silhouette Coefficient is used when the ground-truth about the dataset is unknown and computes the
density of clusters computed by the model. The score is computed by averaging the silhouette coefficient for
each sample, computed as the difference between the average intra-cluster distance and the mean nearest-
cluster distance for each sample, normalized by the maximum value. This produces a score between 1 and

-1, where 1 is highly dense clusters and -1 is completely incorrect clustering.

The Silhouette Visualizer displays the silhouette coefficient for each sample on a per-cluster basis, visualizing
which clusters are dense and which are not. This is particularly useful for determining cluster imbalance, or

for selecting a value for K by comparing multiple visualizers.

96 Chapter 4. B

https://bl.ocks.org/rpgove/0060ff3b656618e9136b

Yellowbrick Documentation, &% v0.5

Make 8 blobs dataset
X, y = make_blobs(centers=8)

Instantiate the clustering model and visualizer
model = MiniBatchKMeans(6)

visualizer = SilhouetteVisualizer (model)

visualizer.fit(X) # Fit the training data to the visualizer

visualizer.poof() # Draw/show/poof the data

Silhouette Plot of MiniBatchKMeans Clustering for 1000 Samples in 6 Centers

5

cluster label
%]

-1.0 0.8 0.6 04 -0.2 0.0 02 04 06 0.8 1.0
silhouette coefficient values

API Reference

Implements visualizers that use the silhouette metric for cluster evaluation.

class yellowbrick.cluster.silhouette.SilhouetteVisualizer (model, az=None, **kwargs)

H:2: yellowbrick.cluster.base.ClusteringScoreVisualizer
TODO: Document this class!

draw (labels)

Draw the silhouettes for each sample and the average score.

4.3. Visualizers and API 97

Yellowbrick Documentation, 445 v0.5

Parameters

labels [array-like] An array with the cluster label for each silhouette sample, usually
computed with predict(). Labels are not stored on the visualizer so that the

figure can be redrawn with new data.

finalize()
Prepare the figure for rendering by setting the title and adjusting the limits on the axes, adding
labels and a legend.

fit (X, y=None, **kwargs)

Fits the model and generates the the silhouette visualization.

TODO: decide to use this method or the score method to draw. NOTE: Probably this would be

better in score, but the standard score is a little different and I'm not sure how it’s used.

4.3.7 Text Modeling Visualizers

Yellowbrick provides the yellowbrick.text module for text-specific visualizers. The Tezt Visualizer class specif-
ically deals with datasets that are corpora and not simple numeric arrays or DataFrames, providing utilities
for analyzing word distribution, showing document similarity, or simply wrapping some of the other standard

visualizers with text-specific display properties.
We currently have two text-specific visualizations implemented:
e Token Frequency Distribution: plot the frequency of tokens in a corpus
e t-SNE Corpus Visualization: plot similar documents closer together to discover clusters

Note that the examples in this section require a corpus of text data, see loading a text corpus for more

information.

from yellowbrick.text import FreqDistVisualizer

from yellowbrick.text import TSNEVisualizer

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.feature_extraction.text import CountVectorizer

Loading a Text Corpus

As in the previous sections, Yellowbrick has provided a sample dataset to run the following cells. In particular,
we are going to use a text corpus wrangled from the Baleen RSS Corpus to present the following examples.

If you haven’t already downloaded the data, you can do so by running:

$ python -m yellowbrick.download

98 Chapter 4. B

http://baleen.districtdatalabs.com/

Yellowbrick Documentation, & %5 v0.5

Note that this will create a directory called data in your current working directory that contains subdirec-

tories with the provided datasets.

{#: If you've already followed the instructions from downloading example datasets, you don’t have to

repeat these steps here. Simply check to ensure there is a directory called hobbies in your data directory.

The following code snippet creates a utility that will load the corpus from disk into a Scikit-Learn Bunch
object. This method creates a corpus that is exactly the same as the one found in the "working with text

data” example on the Scikit-Learn website, hopefully making the examples easier to use.

import os

from sklearn.datasets.base import Bunch

def load_corpus(path):

mmnn

Loads and wrangles the passed in text corpus by path.

nnn

Check if the data exzists, otherwise download or raise
if not os.path.exists(path):
raise ValueError((
"' {}' dataset has not been downloaded, "
"use the yellowbrick.download module to fetch datasets"

) .format (path))

Read the directories in the directory as the categories.
categories = [
cat for cat in os.listdir(path)

if os.path.isdir(os.path.join(path, cat))

files = [] # holds the file names relative to the Toot

data [1 # holds the texzt read from the file

target [1 # holds the string of the category
Load the data from the files in the corpus
for cat in categories:
for name in os.listdir(os.path.join(path, cat)):
files.append(os.path.join(path, cat, name))
target.append(cat)

(T ougkzE)

4.3. Visualizers and API 99

http://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html
http://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html

Yellowbrick Documentation, 445 v0.5

(8:EW)

with open(os.path.join(path, cat, name), 'r') as f:

data.append(f.read())

Return the data bunch for use similar to the newsgroups example
return Bunch(

categories=categories,

files=files,

data=data,

target=target,

This is a fairly long ibt of code, so let’s walk through it step by step. The data in the corpus directory is

stored as follows:

data/hobbies
README.md
books
| 56d62a53c1808113ffb87f1f.txt
| 5745a9c7c180810be6efd70b. txt
cinema
| 56d629b5c1808113££fb87d8f . txt
| 57408e5£c180810be6e574c8. txt
cooking
| 56d62b25c1808113f£fb8813b.txt
| 573£0728c180810be6e2575¢c . txt
gaming
| 56d62654c1808113f£fb87938.txt
| 574585d7c180810bebef7ffc.txt
sports
56d62adec1808113ffb88054 . txt
56d70£17c180810560aec345.txt

Each of the documents in the corpus is stored in a text file labeled with its hash signature in a directory
that specifies its label or category. Therefore the first step after checking to make sure the specified path
exists is to list all the directories in the hobbies directory — this gives us each of our categories, which we

will store later in the bunch.

The second step is to create placeholders for holding filenames, text data, and labels. We can then loop
through the list of categories, list the files in each category directory, add those files to the files list, add the
category name to the target list, then open and read the file to add it to data.

100 Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

To load the corpus into memory, we can simply use the following snippet:

corpus = load_corpus("data/hobbies")

We'll use this snippet in all of the text examples in this section!

Token Frequency Distribution

A method for visualizing the frequency of tokens within and across corpora is frequency distribution. A
frequency distribution tells us the frequency of each vocabulary item in the text. In general, it could count
any kind of observable event. It is a distribution because it tells us how the total number of word tokens in

the text are distributed across the vocabulary items.

from yellowbrick.text.freqdist import FreqDistVisualizer

from sklearn.feature_extraction.text import CountVectorizer

Note that the FregDistVisualizer does not perform any normalization or vectorization, and it expects text

that has already be count vectorized.

We first instantiate a FreqDistVisualizer object, and then call £it() on that object with the count
vectorized documents and the features (i.e. the words from the corpus), which computes the frequency
distribution. The visualizer then plots a bar chart of the top 50 most frequent terms in the corpus, with
the terms listed along the x-axis and frequency counts depicted at y-axis values. As with other Yellowbrick

visualizers, when the user invokes poof (), the finalized visualization is shown.

vectorizer = CountVectorizer()
docs = vectorizer.fit_transform(corpus.data)

features = vectorizer.get_feature_names()

visualizer = FreqDistVisualizer(features=features)
visualizer.fit(docs)

visualizer.poof ()

4.3. Visualizers and API 101

Yellowbrick Documentation, 445 v0.5

Freguency Distribution of Top 50 tokens

'vecab: 20,140 N corpus

o e 2
10000
8000
6000

4000

D “‘l“"“III||||||||||||IIIIIIIIIIII||||||||||||

sl Ee s e e 5 guggﬁg,g;

200

(=]

It is interesting to compare the results of the FreqDistVisualizer before and after stopwords have been

removed from the corpus:

vectorizer = CountVectorizer(stop_words='english')

docs = vectorizer.fit_transform(corpus.data)

features vectorizer.get_feature_names ()
visualizer = FreqDistVisualizer(features=features)
visualizer.fit(docs)

visualizer.poof ()

102 Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

Freguency Distribution of Top 50 tokens

(vocab: 19,849 | EEEE COTpUS

words: 123,229

600 thapax:&T?1 _
500
400
300
200
0

It is also interesting to explore the differences in tokens across a corpus. The hobbies corpus that comes
with Yellowbrick has already been categorized (try corpus['categories']), so let’s visually compare the

differences in the frequency distributions for two of the categories: “cooking” and “gaming”.

from collections import defaultdict

hobbies = defaultdict(list)
for text, label in zip(corpus.data, corpus.label):

hobbies[label] .append(text)

vectorizer = CountVectorizer(stop_words='english')

docs = vectorizer.fit_transform(text for text in hobbies['cooking'])
features = vectorizer.get_feature_names()
visualizer = FreqDistVisualizer(features=features)

visualizer.fit(docs)

visualizer.poof ()

4.3. Visualizers and API 103

Yellowbrick Documentation, %45 v0.5

Freguency Distribution of Top 50 tokens

'vocab: 3,966 N corpus
‘words: 15,832 |

140 hapax: 1,671

120

100
60
40
) | ||||||||||‘|‘
0
wo

e
m_i: w—

0% SoEase pe g PR ARy RoR XS SERSEE AC YD TRy CUB X SUTE ROn2S
SoE=gpnosEa £55828 Eg=c =
S S RoeBRRER 3" g e S8 B8 g p8s c R o 3820808

S T8 EE%ET TTRAG S fh o

vectorizer = CountVectorizer(stop_words='english')

vectorizer.fit_transform(text for text in hobbies['gaming'])

docs

features = vectorizer.get_feature_names()

visualizer = FreqDistVisualizer (features=features)
visualizer.fit(docs)

visualizer.poof ()

104 Chapter 4. HF

Yellowbrick Documentation, & %5 v0.5

Freguency Distribution of Top 50 tokens

'vocab: 7,564 N corpus

words: 30,102
400 | hapax: 3,711
350
300
250
200
150
100
D Il
DOSLUR CETSSESL OZZ0E IRoT xS QJ“JEWEEE6EE_E““JHQE"=E‘EE“
O G === [51=1 & wogo— 25
55, -t R e
g 2 & Ze = &5° 23 %

API| Reference

Implementations of frequency distributions for text visualization

class yellowbrick.text.freqdist.FrequencyVisualizer (features, ar=None, n=50, orient="h’

color=None, **kwargs)
28 yellowbrick.text.base.TextVisualizer

A frequency distribution tells us the frequency of each vocabulary item in the text. In general, it could
count any kind of observable event. It is a distribution because it tells us how the total number of

word tokens in the text are distributed across the vocabulary items.

Parameters

features [list, default: None] The list of feature names from the vectorizer, ordered by
index. E.g. a lexicon that specifies the unique vocabulary of the corpus. This can
be typically fetched using the get_feature_names() method of the transformer in
Scikit-Learn.

ax [matplotlib axes, default: None] The axes to plot the figure on.
n: integer, default: 50 Top N tokens to be plotted.

orient ['h’ or 'v’, default: ’h’] Specifies a horizontal or vertical bar chart.

4.3. Visualizers and API 105

Yellowbrick Documentation, 445 v0.5

color [list or tuple of colors] Specify color for bars

kwargs [dict] Pass any additional keyword arguments to the super class.
These parameters can be influenced later on in the visualization
process, but can and should be set as early as possible.

count (X)
Called from the fit method, this method gets all the words from the corpus and their corresponding

frequency counts.
Parameters

X [ndarray or masked ndarray] Pass in the matrix of vectorized documents, can be

masked in order to sum the word frequencies for only a subset of documents.
Returns
counts [array] A vector containing the counts of all words in X (columns)

draw (**kwargs)

Called from the fit method, this method creates the canvas and draws the distribution plot on it.
Parameters
kwargs: generic keyword arguments.

finalize (**kwargs)
The finalize method executes any subclass-specific axes finalization steps. The user calls poof &

poof calls finalize.
Parameters
kwargs: generic keyword arguments.

fit (X, y=None)
The fit method is the primary drawing input for the frequency distribution visualization. It
requires vectorized lists of documents and a list of features, which are the actual words from the

original corpus (needed to label the x-axis ticks).
Parameters

X [ndarray or DataFrame of shape n x m] A matrix of n instances with m features

representing the corpus of frequency vectorized documents.

y [ndarray or DataFrame of shape n] Labels for the documents for conditional fre-

quency distribution.

. note:: Text documents must be vectorized before ““fit()‘.

106 Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

t-SNE Corpus Visualization

One very popular method for visualizing document similarity is to use t-distributed stochastic neighbor
embedding, t-SNE. Scikit-Learn implements this decomposition method as the sklearn.manifold.TSNE
transformer. By decomposing high-dimensional document vectors into 2 dimensions using probability distri-
butions from both the original dimensionality and the decomposed dimensionality, t-SNE is able to effectively
cluster similar documents. By decomposing to 2 or 3 dimensions, the documents can be visualized with a

scatter plot.

Unfortunately, TSNE is very expensive, so typically a simpler decomposition method such as SVD or PCA
is applied ahead of time. The TSNEVisualizer creates an inner transformer pipeline that applies such
a decomposition first (SVD with 50 components by default), then performs the t-SNE embedding. The
visualizer then plots the scatter plot, coloring by cluster or by class, or neither if a structural analysis is

required.

from yellowbrick.text import TSNEVisualizer

from sklearn.feature_extraction.text import TfidfVectorizer

After importing the required tools, we can load the corpus and vectorize the text using TF-IDF.

Load the data and create document vectors

corpus = load_corpus('hobbies')
tfidf TfidfVectorizer ()

docs = tfidf.fit_transform(corpus.data)

labels = corpus.target

Now that the corpus is vectorized we can visualize it, showing the distribution of classes.

Create the visualizer and draw the vectors
tsne = TSNEVisualizer()

tsne.fit(docs, labels)

tsne.poof ()

4.3. Visualizers and API 107

Yellowbrick Documentation, k&% v0.5

TSNE Projection of 448 Documents

‘e ®e . .
& gaming

L L] ® .
3 [] e @ cooking

® . . cinema

°®pin’, s ° ® books
orts
® ° LR) ® 5p

If we omit the target during fit, we can visualize the whole dataset to see if any meaningful patterns are

observed.

Don't color points with their classes
tsne = TSNEVisualizer(labels=["documents"])
tsne.fit(docs)

tsne.poof ()

108 Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

TSNE Projection of 448 Documents

® documents

This means we don’t have to use class labels at all, instead we can use cluster membership from K-Means

to label each document, looking for clusters of related text by their contents:

Apply clustering instead of class mnames.

from sklearn.cluster import KMeans

clusters = KMeans(n_clusters=5)

clusters.fit(docs)

tsne = TSNEVisualizer()
tsne.fit(docs, ["c{}".format(c) for c in clusters.labels_])

tsne.poof ()

4.3. Visualizers and API 109

Yellowbrick Documentation, 445 v0.5

TSNE Projection of 448 Documents

.. L
o .(.'..0'.0 * o
® ® o* 2% b, o .
. tﬁ. % O RN .

8 ;f t.'. ' .. ° : g
""-"'Z’Eg-:g{.'v':-'!- L% .
° o.. R o™ o) y o"'o ™ 2:13
o’ -':"'l‘-'.’ .3 o n s . °
. ¢ o .';"
® “ .
. %

API| Reference

Implements TSNE visualizations of documents in 2D space.

class yellowbrick.text.tsne.TSNEVisualizer (az=None, decompose=’"svd’; decompose__by=50,

labels=None, classes=None, colors=None, col-
ormap=None, random__state=None, **kwargs)
FJ5: yellowbrick.text.base.TextVisualizer
Display a projection of a vectorized corpus in two dimensions using TSNE, a nonlinear dimensionality
reduction method that is particularly well suited to embedding in two or three dimensions for visual-
ization as a scatter plot. TSNE is widely used in text analysis to show clusters or groups of documents

or utterances and their relative proximities.

TSNE will return a scatter plot of the vectorized corpus, such that each point represents a document
or utterance. The distance between two points in the visual space is embedded using the probability
distribution of pairwise similarities in the higher dimensionality; thus TSNE shows clusters of similar

documents and the relationships between groups of documents as a scatter plot.

TSNE can be used with either clustering or classification; by specifying the classes argument, points
will be colored based on their similar traits. For example, by passing cluster.labels_asy in fit(),

all points in the same cluster will be grouped together. This extends the neighbor embedding with

110

Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

more information about similarity, and can allow better interpretation of both clusters and classes.
For more, see https://lvdmaaten.github.io/tsne/
Parameters
ax [matplotlib axes] The axes to plot the figure on.

decompose [string or None, default: 'svd'] A preliminary decomposition is often used
prior to TSNE to make the projection faster. Specify "svd" for sparse data or "pca"

for dense data. If None, the original data set will be used.

decompose_ by [int, default: 50] Specify the number of components for preliminary

decomposition, by default this is 50; the more components, the slower TSNE will be.

labels [list of strings] The names of the classes in the target, used to create a legend.

Labels must match names of classes in sorted order.
colors [list or tuple of colors] Specify the colors for each individual class
colormap [string or matplotlib cmap] Sequential colormap for continuous target

random__state [int, RandomState instance or None, optional, default: None| If int,
random__state is the seed used by the random number generator; If RandomState
instance, random__state is the random number generator; If None, the random num-
ber generator is the RandomState instance used by np.random. The random state

is applied to the preliminary decomposition as well as tSNE.
kwargs [dict] Pass any additional keyword arguments to the TSNE transformer.
NULL_CLASS = None

draw (points, target=None, **kwargs)
Called from the fit method, this method draws the TSNE scatter plot, from a set of decomposed
points in 2 dimensions. This method also accepts a third dimension, target, which is used to
specify the colors of each of the points. If the target is not specified, then the points are plotted

as a single cloud to show similar documents.

finalize (**kwargs)
Finalize the drawing by adding a title and legend, and removing the axes objects that do not

convey information about TNSE.

fit (X, y=None, **kwargs)
The fit method is the primary drawing input for the TSNE projection since the visualization
requires both X and an optional y value. The fit method expects an array of numeric vectors, so

text documents must be vectorized before passing them to this method.
Parameters

X [ndarray or DataFrame of shape n x m] A matrix of n instances with m features

representing the corpus of vectorized documents to visualize with tsne.

4.3.

Visualizers and API 111

https://lvdmaaten.github.io/tsne/

Yellowbrick Documentation, 445 v0.5

v [ndarray or Series of length n] An optional array or series of target or class values
for instances. If this is specified, then the points will be colored according to their
class. Often cluster labels are passed in to color the documents in cluster space, so

this method is used both for classification and clustering methods.
kwargs [dict] Pass generic arguments to the drawing method
Returns
self [instance] Returns the instance of the transformer/visualizer

make_transformer (decompose=’svd’, decompose__by=>50, tsne_kwargs={})
Creates an internal transformer pipeline to project the data set into 2D space using TSNE,
applying an pre-decomposition technique ahead of embedding if necessary. This method will reset

the transformer on the class, and can be used to explore different decompositions.
Parameters

decompose [string or None, default: 'svd'] A preliminary decomposition is often
used prior to TSNE to make the projection faster. Specify "svd" for sparse data

or "pca" for dense data. If decompose is None, the original data set will be used.

decompose__by [int, default: 50] Specify the number of components for preliminary
decomposition, by default this is 50; the more components, the slower TSNE will
be.

Returns

transformer [Pipeline] Pipelined transformer for TSNE projections

4.3.8 Colors and Style

Yellowbrick believes that visual diagnostics are more effective if visualizations are appealing. As a result, we
have borrowed familiar styles from Seaborn and use the new Matplotlib 2.0 styles. We hope that these out
of the box styles will make your visualizations publication ready, though of course you can customize your

own look and feel by directly modifying the visualization with matplotlib.

Yellowbrick prioritizes color in its visualizations for most visualizers. There are two types of color sets that
can be provided to a visualizer: a palette and a sequence. Palettes are discrete color values usually of a fixed
length and are typically used for classification or clustering by showing each class, cluster or topic. Sequences
are continuous color values that do not have a fixed length but rather a range and are typically used for

regression or clustering, showing all possible values in the target or distances between items in clusters.

In order to make the distinction easy, most matplotlib colors (both palettes and sequences) can be referred

to by name. A complete listing can be imported as follows:

import matplotlib.pyplot as plt
from yellowbrick.style.palettes import PALETTES, SEQUENCES, color_palette

112 Chapter 4. B

http://seaborn.pydata.org/tutorial/aesthetics.html
https://matplotlib.org/users/colormaps.html

Yellowbrick Documentation, & %5 v0.5

Palettes and sequences can be passed to visualizers as follows:

visualizer = Visualizer(color="bold")

Refer to the API listing of each visualizer for specifications about how each color argument is handled. In the

next two sections we will show every possible color palette and sequence currently available in Yellowbrick.

Color Palettes

Color palettes are discrete color lists that have a fixed length. The most common palettes are ordered as
"blue”, "green”, "red”, "maroon”, "yellow”, "cyan”, and an optional "key”. This allows you to specify these

named colors or by the first character, e.g. 'bgrmyck’ for matplotlib visualizations.

To change the global color palette, use the set palette function as follows:

from yellowbrick.style import set_palette
set_palette('flatui')

Color palettes are most often used for classifiers to show the relationship between discrete class labels. They

can also be used for clustering algorithms to show membership in discrete clusters.

A complete listing of the Yellowbrick color palettes can be visualized as follows:

['blue', 'green', 'red', 'maroon’, 'yellow', 'cyan']
for palette in PALETTES.keys(Q):

color_palette(palette) .plot()

plt.title(palette, loc='left')

reset

pastel

4.3. Visualizers and API 113

Yellowbrick Documentation, k&% v0.5

colorblind

o
=
=1

=
=
—t
e}
(=

w
=

5 pastel

sns dee

114 Chapter 4. B

Yellowbrick Documentation, &% v0.5

accent

sns_dark

dark

paired

sns_muted

sns_colorblind

set1

4.3. Visualizers and API 115

Yellowbrick Documentation, %45 v0.5

yellowbrick

sns_bright

Color Sequences

Color sequences are continuous representations of color and are usually defined as a fixed number of steps
between a minimum and maximal value. Sequences must be created with a total number of bins (or length)
before plotting to ensure that values are assigned correctly. In the listing below, each sequence is shown with

varying lengths to describe the range of colors in detail.

Color sequences are most often used in regressions to show the distribution in the range of target values.

They can also be used in clustering and distribution analysis to show distance or histogram data.

Below is a complete listing of all the sequence names available in Yellowbrick:

for name, maps in SEQUENCES.items():

for num, palette in maps.items():

color_palette(palette) .plot()
plt.title("{} - {}".format(name, num), loc='left')

Spectral - 3

Spectral - 4

116 Chapter 4. B

Yellowbrick Documentation, &% v0.5

Spectral - 5

Spectral - 6

Spectral - 7

Spectral - 8

Spectral - 9

Spectral - 10

Spectral - 11

4.3. Visualizers and API 117

Yellowbrick Documentation, k&% v0.5

Rd¥Y1Gn - 3

RdYIGn - 4

Rd¥YIGn - 5

Rd¥YlGn - 6

RdYlGn - 7

Rd¥YlGn - 8

RdYIGn -9

118 Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

RdYIGn - 10
I N
RdYIGn - 11
I - e
OrRd - 3

_
OrRd - 4

B
OrRd - 5

-
OrRd - 6

- .

OrRd - 7

4.3. Visualizers and API 119

Yellowbrick Documentation, k&% v0.5

OrRd - 8
.
OrRd -9
- e

PuBu - 3

.
PuBu - 4

B
PuBu - 5

.
PuBu -6

-

PuBu - 7

120 Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

PuBu -8

PuBu -9

BuPu - 3
BuPu - 4
BuPu -5

BuPu -6

BuPu -7

4.3. Visualizers and API 121

Yellowbrick Documentation, k&% v0.5

BuPu - 8
BuPu -9
RdBu - 3

RdBu - 4

RdBu - 5

RdBu - 6

RdBu - 7

122 Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

RdBu - 8

RdBu -9

RdBu - 10

RdBu - 11

Oranges - 3

Oranges - 4

Oranges - 5

4.3. Visualizers and API 123

Yellowbrick Documentation, k&% v0.5

Oranges - 6
- N
Oranges - 7
- N
Oranges - 8
- N
Oranges - 9
.
BuGn - 3
-
BuGn - 4
B
BuGn - 5

124 Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

BuGn - 6
BuGn -7
BuGn - 8
BuGn -9
PIYG -3
PIYG-4

PiYG -5

4.3. Visualizers and API

125

Yellowbrick Documentation, k&% v0.5

PiYG -6

PIYG-7

PiYG - 8

PIYG-9

PIYG-10

PIYG - 11

YIOrBr - 3

126 Chapter 4. B

Yellowbrick Documentation, &% v0.5

YIOrBr - 4
B
YIOrBr - 5
-
YIOrBr - 6
- HE
YIOrBr -7
- N
YIOrBr - 8
.
YIOrBr-9
-
YIGn -3

4.3. Visualizers and API 127

Yellowbrick Documentation, k&% v0.5

¥YiGn - 4
B
YiGn - 5
.
¥YIGn - 6
.
YiGn -7
- N
YiGn - 8
- N
YIGn -9
.
RdPu - 3

128 Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

RdPu - 4
B
RdPu - 5
N
RdPu - 6
- HE
RdPu -7
- N
RdPu - 8
- NEE
RdPu -9
-
Greens - 3

4.3. Visualizers and API 129

Yellowbrick Documentation, k&% v0.5

Greens -4

Greens -5

Greens - 6

Greens - 7

Greens - 8

Greens - 9

PRGn -3

130 Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

PRGn - 4

PRGn -5

PRGn -

PRGN -

PRGN -8
PRGn - 10

PRGn-9
4.3. Visualizers and API 131

Yellowbrick Documentation, %45 v0.5

PRGN - 11
B
YIGnBu - 3
-
YIGnBu - 4
.
YIGnBu - 5
T
YIGnBu - 6
.
YIGnBu - 7
- N
YIGnBu - 8

132 Chapter 4. B

Yellowbrick Documentation, &% v0.5

YIGnBu -9

Rd¥IBu - 3

RdYIBu - 4

RdYIBu - 5

RdYIBu - 6

RdYIBu - 7

Rd¥IBu - 8

4.3. Visualizers and API 133

Yellowbrick Documentation, k&% v0.5

RdYIBu - 9

RdYIBu - 10

RdYIBu - 11

BrBG - 3

BrBG - 4

BrBG -5

BrBG -6

134

Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

BrBG -7

BrBEG - 8

BrBG -9

BrBG - 10

BrBG - 11

Purples - 3

Purples - 4

4.3. Visualizers and API 135

Yellowbrick Documentation, k&% v0.5

Purples - 5
e

Purples - 6

- N
Purples - 7

.
Purples - 8

- NEE
Purples - 9
e

Reds -3

Reds -4

136 Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

Reds - 5
Reds -6
N
Reds - 7
.
Reds - 8
e
Reds -9
- NEEE
ddl_heat - 12
S NEEE
GnBu - 3

4.3. Visualizers and API 137

Yellowbrick Documentation, k&% v0.5

GnBu - 4
B
GnBu - 5
-
GnBu - 6
- H.
GnBu -7
.
GnBu - 8
.
GnBu -9
- e
Greys - 3

138 Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

Greys - 4

Greys - 5

Greys - 6

Greys - 7

Greys - 8

Greys -9

RdGy - 3

4.3. Visualizers and API 139

Yellowbrick Documentation, %45 v0.5

RdGy - 4

RdGy - 5

RdGy - 6

RdGy - 7

RdGy - 8

RdGy - 9

RdGy - 10

140 Chapter 4. HF

Yellowbrick Documentation, & %5 v0.5

RdGy - 11
| e
YIOrRd - 3
-
YIOrRd - 4
B
YIOrRd - &
- R
YIOrRd - 6
-
YIOrRd - 7
- NN
YIOrRd - 8

4.3. Visualizers and API 141

Yellowbrick Documentation, k&% v0.5

YIOrRd - 9

PuOr-3

PuOr-4

PuOr-5

PuOr-6
PuOr-7

PuCr - 8
142 Chapter 4. BH#

Yellowbrick Documentation, & %5 v0.5

PuCr-9

PuOr-10

PuQr-11

PuRd - 3

PuRd - 4

PuRd - 5

PuRd - 6

4.3. Visualizers and API 143

Yellowbrick Documentation, k&% v0.5

PuRd - 7

PuRd - 8

PuRd - 9

Blues - 3

Blues - 4

Blues - 5

Blues - 6

144 Chapter 4. HF

Yellowbrick Documentation, & %5 v0.5

Blues - 7

Blues - 8

Blues - 9

PuBuGn - 3

PuBuGn - 4

PuBuGn -5

PuBuGn -6

4.3. Visualizers and API 145

Yellowbrick Documentation, %45 v0.5

PuBuGn -7

PuBuGn - 8

PuBuGn -9

API| Reference

yellowbrick.style.colors module

Colors and color helpers brought in from an alternate library. See https://bl.ocks.org/mbostock /5577023

class yellowbrick.style.colors.ColorMap (colors="flatui’, shuffle=False)
HIs: object
A helper for mapping categorical values to colors on demand.

colors

yellowbrick.style.colors.get_color_cycle()

Returns the current color cycle from matplotlib.

yellowbrick.style.colors.resolve_colors(n_ colors=None, colormap=None, colors=None)
Generates a list of colors based on common color arguments, for example the name of a colormap or
palette or another iterable of colors. The list is then truncated (or multiplied) to the specific number

of requested colors.
Parameters

n__colors [int, default: None] Specify the length of the list of returned colors, which
will either truncate or multiple the colors available. If None the length of the colors

will not be modified.

146 Chapter 4. HF

https://bl.ocks.org/mbostock/5577023
https://docs.python.org/3/library/functions.html#object

Yellowbrick Documentation, & %5 v0.5

colormap [str, default: None] The name of the matplotlib color map with which to

generate colors.
colors [iterable, default: None| A collection of colors to use specifically with the plot.
Returns

colors [list] A list of colors that can be used in matplotlib plots.

Notes

This function was originally based on a similar function in the pandas plotting library that has been

removed in the new version of the library.

yellowbrick.style.palettes module

Implements the variety of colors that yellowbrick allows access to by name. This code was originally based
on Seaborn’s rcmody.py but has since been cleaned up to be Yellowbrick-specific and to dereference tools we

don’t use. Note that these functions alter the matplotlib rc dictionary on the fly.

yellowbrick.style.palettes.color_palette(palette=None, n_ colors=None)

Return a color palette object with color definition and handling.
Calling this function with palette=None will return the current matplotlib color cycle.

This function can also be used in a with statement to temporarily set the color cycle for a plot or set

of plots.
Parameters

palette [None or str or sequence] Name of a palette or None to return the current

palette. If a sequence the input colors are used but possibly cycled.
Available palette names from yellowbrick.colors.palettes are:

e accent

e dark

e paired

e pastel

e bold

e muted

e colorblind
e sns_colorblind
e sns_deep

e sns_muted
e sns_pastel

e sns_bright

4.3. Visualizers and API 147

Yellowbrick Documentation, 445 v0.5

e sns_dark
o flatui

e neural_paint

n__colors [None or int] Number of colors in the palette. If None, the default will depend
on how palette is specified. Named palettes default to 6 colors which allow the use of
the names "bgrmyck”, though others do have more or less colors; therefore reducing
the size of the list can only be done by specifying this parameter. Asking for more

colors than exist in the palette will cause it to cycle.
Returns

list(tuple) Returns a ColorPalette object, which behaves like a list, but can be used as

a context manager and possesses functions to convert colors.
. seealso::
set_palette() Set the default color cycle for all plots.

set_color_codes() Reassign color codes like "b", "g", etc. to colors from one of

the yellowbrick palettes.
colors.resolve_colors() Resolve a color map or listed sequence of colors.

yellowbrick.style.palettes.set_color_codes (palette="accent’)

Change how matplotlib color shorthands are interpreted.

Calling this will change how shorthand codes like ”b” or "g” are interpreted by matplotlib in subsequent

plots.
Parameters
palette [str] Named yellowbrick palette to use as the source of colors.
%W

set_palette Color codes can also be set through the function that sets the matplotlib color cycle.

yellowbrick.style.rcmod module

Modifies the matplotlib rcParams in order to make yellowbrick more appealing. This has been modified from

Seaborn’s remod.py: github.com/mwaskom /seaborn in order to alter the matplotlib rc dictionary on the fly.
NOTE: matplotlib 2.0 styles mean we can simply convert this to a stylesheet!

yellowbrick.style.rcmod.set_aesthetic (palette="yellowbrick’, font=’sans-serif’, font scale=1,
color__codes=True, rc=None)
Set aesthetic parameters in one step.
Each set of parameters can be set directly or temporarily, see the referenced functions below for more

information.

148 Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

Parameters
palette [string or sequence] Color palette, see color_palette()
font [string] Font family, see matplotlib font manager.

font__scale [float, optional] Separate scaling factor to independently scale the size of

the font elements.

color__codes [bool] If True and palette is a yellowbrick palette, remap the shorthand

color codes (e.g. "b”, "g”, "r”, etc.) to the colors from this palette.
rc [dict or None| Dictionary of rc parameter mappings to override the above.

yellowbrick.style.rcmod.set_style(style=None, rc=None)
Set the aesthetic style of the plots.

This affects things like the color of the axes, whether a grid is enabled by default, and other aesthetic

elements.
Parameters

style [dict, None, or one of {darkgrid, whitegrid, dark, white, ticks}] A dictionary of

parameters or the name of a preconfigured set.

rc [dict, optional] Parameter mappings to override the values in the preset seaborn
style dictionaries. This only updates parameters that are considered part of the

style definition.

yellowbrick.style.rcmod.set_palette(palette, n__colors=None, color_codes=False)

Set the matplotlib color cycle using a seaborn palette.
Parameters

palette [yellowbrick color palette | seaborn color palette (with sns_ prepended)] Palette

definition. Should be something that color_palette() can process.

n__colors [int] Number of colors in the cycle. The default number of colors will de-
pend on the format of palette, see the color_palette() documentation for more
information.

color__codes [bool] If True and palette is a seaborn palette, remap the shorthand

NN

color codes (e.g. "b”, "g”, "r”, etc.) to the colors from this palette.

yellowbrick.style.rcmod.reset_defaults()
Restore all RC params to default settings.

yellowbrick.style.rcmod.reset_orig()

Restore all RC params to original settings (respects custom rc).

{Ef#: Many examples utilize data from the UCI Machine Learning repository, in order to run the examples,

4.3. Visualizers and API 149

Yellowbrick Documentation, 445 v0.5

make sure you follow the instructions in Ezample Datasets to download and load required data.

A guide to finding the visualizer you're looking for: generally speaking, visualizers can be data visualizers
which visualize instances relative to the model space; score visualizers which visualize model performance;
model selection visualizers which compare multiple model forms against each other; and application specific-
visualizers. This can be a bit confusing, so we’ve grouped visualizers according to the type of analysis they

are well suited for.

Feature analysis visualizers are where you’ll find the primary implementation of data visualizers. Regression,
classification, and clustering analysis visualizers can be found in their respective libraries. Finally visualizers
for text analysis are also available in Yellowbrick! Other utilities like styles, best fit lines, and anscombe’s

visualization can also be found in the links above.

4.4 User Testing Instructions

We are looking for people to help us Alpha test the Yellowbrick project! Helping is simple: simply create a
notebook that applies the concepts in this Getting Started guide to a small-to-medium size dataset of your
choice. Run through the examples with the dataset, and try to change options and customize as much as

possible. After you've exercised the code with your examples, respond to our alpha testing survey!

4.4.1 Step One: Questionaire

Please open the quesionaire, in order to familiarize yourself with the feedback that we are looking to receive.
We are very interested in identifying any bugs in Yellowbrick. Please include al cells in your jupyter notebook

that produce errors so that we may reproduce the problem.

4.4.2 Step Two: Dataset

Select a multivariate dataset of your own; the more (e.g. different) datasets that we can run through
Yellowbrick, the more likely we’ll discover edge cases and exceptions! Note that your dataset must be well-
suited to modeling with Scikit-Learn. In particular we recommend you choose a dataset whose target is

suited to the following supervised learning tasks:
o Regression (target is a continuous variable)
o Classification (target is a discrete variable)

There are datasets that are well suited to both types of analysis; either way you can use the testing method-
ology from this notebook for either type of task (or both). In order to find a dataset, we recommend you

try the following places:
e UCI Machine Learning Repository

e« MLData.org

150 Chapter 4. B

https://goo.gl/forms/naoPUMFa1xNcafY83
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Classification_in_machine_learning
http://archive.ics.uci.edu/ml/
http://mldata.org/

Yellowbrick Documentation, & %5 v0.5

¢ Awesome Public Datasets

You’re more than welcome to choose a dataset of your own, but we do ask that you make at least the notebook
containing your testing results publicly available for us to review. If the data is also public (or you're willing
to share it with the primary contributors) that will help us figure out bugs and required features much more

easily!

4.4.3 Step Three: Notebook

Create a notebook in a GitHub repository. We suggest the following:
1. Fork the Yellowbrick repository
2. Under the examples directory, create a directory named with your GitHub username
3. Create a notebook named testing, i.e. examples/USERNAME/testing.ipynb

Alternatively, you could just send us a notebook via Gist or your own repository. However, if you fork

Yellowbrick, you can initiate a pull request to have your example added to our gallery!

4.4.4 Step Four: Model with Yellowbrick and Scikit-Learn

Add the following to the notebook:

e A title in markdown

e A description of the dataset and where it was obtained

e A section that loads the data into a Pandas dataframe or NumPy matrix
Then conduct the following modeling activities:

e Feature analysis using Scikit-Learn and Yellowbrick

o Estimator fitting using Scikit-Learn and Yellowbrick

You can follow along with our examples directory (check out examples.ipynb) or even create your own
custom visualizers! The goal is that you create an end-to-end model from data loading to estimator(s) with

visualizers along the way.

IMPORTANT: please make sure you record all errors that you get and any tracebacks you receive for step
three!

4.4.5 Step Five: Feedback

Finally, submit feedback via the Google Form we have created:

https://goo.gl/forms/naoPUMFalxNcafY83

4.4, User Testing Instructions 151

https://github.com/caesar0301/awesome-public-datasets
https://github.com/DistrictDataLabs/yellowbrick/blob/master/examples/examples.ipynb
https://goo.gl/forms/naoPUMFa1xNcafY83

Yellowbrick Documentation, 445 v0.5

This form is allowing us to aggregate multiple submissions and bugs so that we can coordinate the creation
and management of issues. If you are the first to report a bug or feature request, we will make sure you're

notified (we’ll tag you using your Github username) about the created issue!

4.4.6 Step Six: Thanks!

Thank you for helping us make Yellowbrick better! We’d love to see pull requests for features you think
would be extend the library. We'll also be doing a user study that we would love for you to participate in.

Stay tuned for more great things from Yellowbrick!

4.5 Contributing

Yellowbrick is an open source project that is supported by a community who will gratefully and humbly
accept any contributions you might make to the project. Large or small, any contribution makes a big
difference; and if you've never contributed to an open source project before, we hope you will start with
Yellowbrick!

Principally, Yellowbrick development is about the addition and creation of visualizers — objects that learn
from data and create a visual representation of the data or model. Visualizers integrate with scikit-learn
estimators, transformers, and pipelines for specific purposes and as a result, can be simple to build and
deploy. The most common contribution is a new visualizer for a specific model or model family. We’ll

discuss in detail how to build visualizers later.
Beyond creating visualizers, there are many ways to contribute:
e Submit a bug report or feature request on GitHub Issues.
e Contribute an Jupyter notebook to our examples gallery.
o Assist us with user testing.
e Add to the documentation or help with our website, scikit-yb.org
e Write unit or integration tests for our project.
e Answer questions on our issues, mailing list, Stack Overflow, and elsewhere.
o Translate our documentation into another language.
o Write a blog post, tweet, or share our project with others.
o Teach someone how to use Yellowbrick.

As you can see, there are lots of ways to get involved and we would be very happy for you to join us! The
only thing we ask is that you abide by the principles of openness, respect, and consideration of others as

described in the Python Software Foundation Code of Conduct.

152 Chapter 4. B

https://github.com/DistrictDataLabs/yellowbrick/issues
https://github.com/DistrictDataLabs/yellowbrick/tree/develop/examples
http://www.scikit-yb.org/en/latest/evaluation.html
http://www.scikit-yb.org
https://www.python.org/psf/codeofconduct/

Yellowbrick Documentation, & %5 v0.5

4.5.1 Getting Started on GitHub

Yellowbrick is hosted on GitHub at https://github.com/DistrictDataLabs/yellowbrick.
The typical workflow for a contributor to the codebase is as follows:
1. Discover a bug or a feature by using Yellowbrick.
2. Discuss with the core contributors by adding an issue.
3. Assign yourself the task by pulling a card from our Waffle Kanban
4. Fork the repository into your own GitHub account.
5. Create a Pull Request first thing to connect with us about your task.
6. Code the feature, write the tests and documentation, add your contribution.
7. Review the code with core contributors who will guide you to a high quality submission.

8. Merge your contribution into the Yellowbrick codebase.

{If#: Please create a pull request as soon as possible, even before you've started coding. This will allow
the core contributors to give you advice about where to add your code or utilities and discuss other style

choices and implementation details as you go. Don’t wait!

We believe that contribution is collaboration and therefore emphasize communication throughout the open

source process. We rely heavily on GitHub’s social coding tools to allow us to do this.

Forking the Repository

The first step is to fork the repository into your own account. This will create a copy of the codebase that
you can edit and write to. Do so by clicking the ”fork” button in the upper right corner of the Yellowbrick
GitHub page.

Once forked, use the following steps to get your development environment set up on your computer:
1. Clone the repository.

After clicking the fork button, you should be redirected to the GitHub page of the repository

in your user account. You can then clone a copy of the code to your local machine.:

$ git clone https://github.com/[YOURUSERNAME] /yellowbrick
$ cd yellowbrick

2. Create a virtual environment.

4.5. Contributing 153

https://github.com/DistrictDataLabs/yellowbrick
https://github.com/DistrictDataLabs/yellowbrick/issues
https://waffle.io/DistrictDataLabs/yellowbrick
https://github.com/DistrictDataLabs/yellowbrick/pulls

Yellowbrick Documentation, 445 v0.5

Yellowbrick developers typically use virtualenv (and virtualenvwrapper), pyenv or conda envs
in order to manage their Python version and dependencies. Using the virtual environment

tool of your choice, create one for Yellowbrick. Here’s how with virtualenv:

$ virtualenv venv

3. Install dependencies.

Yellowbrick’s dependencies are in the requirements.txt document at the root of the repos-
itory. Open this file and uncomment the dependencies that are for development only. Then

install the dependencies with pip:

$ pip install -r requirements.txt

Note that there may be other dependencies required for development and testing; you can
simply install them with pip. For example to install the additional dependencies for build-
ing the documentation or to run the test suite, use the requirements.txt files in those

directories:

$ pip install -r tests/requirements.txt

$ pip install -r docs/requirements.txt

4. Switch to the develop branch.

The Yellowbrick repository has a develop branch that is the primary working branch for
contributions. It is probably already the branch you’re on, but you can make sure and switch

to it as follows:

$ git fetch
$ git checkout develop

At this point you're ready to get started writing code. If you're going to take on a specific task, we’d strongly
encourage you to check out the issue on Waffle and create a pull request before you start coding to better

foster communication with other contributors. More on this in the next section.

Pull Requests

A pull request (PR) is a GitHub tool for initiating an exchange of code and creating a communication
channel for Yellowbrick maintainers to discuss your contribution. In essenence, you are requesting that the
maintainers merge code from your forked repository into the develop branch of the primary Yellowbrick

repository. Once completed, your code will be part of Yellowbrick!

When starting a Yellowbrick contribution, open the pull request as soon as possible. We use your PR issue
page to discuss your intentions and to give guidance and direction. Every time you push a commit into your

forked repository, the commit is automatically included with your pull request, therefore we can review as

154 Chapter 4. HF

https://virtualenv.pypa.io/en/stable/
https://virtualenvwrapper.readthedocs.io/en/latest/
https://github.com/pyenv/pyenv-virtualenv
https://conda.io/docs/using/envs.html
https://waffle.io/DistrictDataLabs/yellowbrick
https://github.com/DistrictDataLabs/yellowbrick/pulls
https://help.github.com/articles/about-pull-requests/

Yellowbrick Documentation, & %5 v0.5

you code. The earlier you open a PR, the more easily we can incorporate your updates, we’d hate for you
to do a ton of work only to discover someone else already did it or that you went in the wrong direction and

need to refactor.

{Efif: For a great example of a pull request for a new feature visualizer, check out this one by Carlo Morales.

When you open a pull request, ensure it is from your forked repository to the develop branch of
github.com /districtdatalabs/yellowbrick; we will not merge a PR into the master branch. Title your Pull
Request so that it is easy to understand what you're working on at a glance. Also be sure to include a

reference to the issue that you're working on so that correct references are set up.

After you open a PR, you should get a message from one of the maintainers. Use that time to discuss your
idea and where best to implement your work. Feel free to go back and forth as you are developing with
questions in the comment thread of the PR. Once you are ready, please ensure that you explicitly ping the

maintainer to do a code review. Before code review, your PR should contain the following:
1. Your code contribution
2. Tests for your contribution
3. Documentation for your contribution
4. A PR comment describing the changes you made and how to use them
5. A PR comment that includes an image/example of your visualizer

At this point your code will be formally reviewed by one of the contributors. We use GitHub’s code review
tool, starting a new code review and adding comments to specific lines of code as well as general global
comments. Please respond to the comments promptly, and don’t be afraid to ask for help implementing any

requested changes! You may have to go back and forth a couple of times to complete the code review.
When the following is true:

1. Code is reviewed by at least one maintainer

2. Continuous Integration tests have passed

3. Code coverage and quality have not decreased

4. Code is up to date with the yellowbrick develop branch

Then we will "Squash and Merge” your contribution, combining all of your commits into a single commit
and merging it into the develop branch of Yellowbrick. Congratulations! Once your contribution has been

merged into master, you will be officially listed as a contributor.

4.5.2 Developing Visualizers

In this section, we’ll discuss the basics of developing visualizers. This of course is a big topic, but hopefully

these simple tips and tricks will help make sense. First thing though, check out this presentation that

4.5. Contributing 155

https://github.com/DistrictDataLabs/yellowbrick/pull/232
https://github.com/cjmorale
https://github.com/districtdatalabs/yellowbrick

Yellowbrick Documentation, 445 v0.5

we put together on yellowbrick development, it discusses the expected user workflow, our integration with

scikit-learn, our plans and roadmap, etc:

One thing that is necessary is a good understanding of scikit-learn and Matplotlib. Because our API is in-
tended to integrate with scikit-learn, a good start is to review "APIs of scikit-learn objects” and "rolling your
own estimator”. In terms of matplotlib, use Yellowbrick’s guide Effective Matplotiib. Additional resources
include Nicolas P. Rougier’s Matplotlib tutorial and Chris Moffitt’s Effectively Using Matplotlib.

Visualizer API

There are two basic types of Visualizers:
o Feature Visualizers are high dimensional data visualizations that are essentially transformers.

e Score Visualizers wrap a scikit-learn regressor, classifier, or clusterer and visualize the behavior or

performance of the model on test data.
These two basic types of visualizers map well to the two basic objects in scikit-learn:
e Transformers take input data and return a new data set.
o Estimators are fit to training data and can make predictions.

The scikit-learn APT is object oriented, and estimators and transformers are initialized with parameters by
instantiating their class. Hyperparameters can also be set using the set_attrs() method and retrieved with
the corresponding get_attrs() method. All scikit-learn estimators have a fit (X, y=None) method that
accepts a two dimensional data array, X, and optionally a vector y of target values. The £it () method trains
the estimator, making it ready to transform data or make predictions. Transformers have an associated
transform(X) method that returns a new dataset, Xprime and models have a predict(X) method that
returns a vector of predictions, yhat. Models also have a score (X, y) method that evaluate the performance
of the model.

Visualizers interact with scikit-learn objects by intersecting with them at the methods defined above. Specifi-
cally, visualizers perform actions related to £it (), transform(), predict (), and score() then call a draw()
method which initializes the underlying figure associated with the visualizer. The user calls the visualizer’s
poof (O method, which in turn calls a finalize () method on the visualizer to draw legends, titles, etc. and

then poof () renders the figure. The Visualizer API is therefore:
e draw(): add visual elements to the underlying axes object

e finalize(): prepare the figure for rendering, adding final touches such as legends, titles, axis labels,

etc.
o poof (): render the figure for the user (or saves it to disk).

Creating a visualizer means defining a class that extends Visualizer or one of its subclasses, then imple-

menting several of the methods described above. A barebones implementation is as follows:

156 Chapter 4. B

http://scikit-learn.org/stable/developers/contributing.html#apis-of-scikit-learn-objects
http://scikit-learn.org/stable/developers/contributing.html#rolling-your-own-estimator
http://scikit-learn.org/stable/developers/contributing.html#rolling-your-own-estimator
https://www.labri.fr/perso/nrougier/teaching/matplotlib/
http://pbpython.com/effective-matplotlib.html

Yellowbrick Documentation, & %5 v0.5

import matplotlib.pyplot as plot

from yellowbrick.base import Visualizer

class MyVisualizer(Visualizer):

def __init__(self, ax=None, *+kwargs):

super (MyVisualizer, self).__init__(ax, **kwargs)

def fit(self, X, y=None):
self.draw(X)

return self

def draw(self, X):
if self.ax is None:

self.ax = self.gca()

self.ax.plot(X)

def finalize(self):
self.set_title("My Visualizer")

This simple visualizer simply draws a line graph for some input dataset X, intersecting with the scikit-learn

APT at the £it () method. A user would use this visualizer in the typical style:

visualizer = MyVisualizer()
visualizer.fit(X)

visualizer.poof ()

Score visualizers work on the same principle but accept an additional required model argument. Score
visualizers wrap the model (which can be either instantiated or uninstantiated) and then pass through all

attributes and methods through to the underlying model, drawing where necessary.

Testing

The test package mirrors the yellowbrick package in structure and also contains several helper methods and
base functionality. To add a test to your visualizer, find the corresponding file to add the test case, or create

a new test file in the same place you added your code.

Visual tests are notoriously difficult to create — how do you test a visualization or figure? Moreover, testing
scikit-learn models with real data can consume a lot of memory. Therefore the primary test you should create

is simply to test your visualizer from end to end and make sure that no exceptions occur. To assist with

4.5. Contributing 157

Yellowbrick Documentation, 445 v0.5

this, we have two primary helpers, VisualTestCase and DatasetMixin. Create your unittest as follows:

import pytest
from tests.base import VisualTestCase

from tests.dataset import DatasetMixin

class MyVisualizerTests(VisualTestCase, DatasetMixin):

def test_my_visualizer(self):

mmnn

Test MyVisualizer on a real dataset
mnmmn
Load the data from the fizture

dataset = self.load_data('occupancy')

Get the data
X = dataset[[
"temperature", "relative_humidity", "light", "CO02", "humidity"
1]
y = dataset['occupancy'].astype(int)

try:
visualizer = MyVisualizer()
visualizer.fit(X)
visualizer.poof ()

except Exception as e:

pytest.fail("my visualizer didn't work")

Tests can be run as follows:

$ make test

The Makefile uses the pytest runner and testing suite as well as the coverage library, so make sure you have
those dependencies installed! The DatasetMixin also requires requests.py to fetch data from our Amazon

S3 account.

Image Comparison Tests

Writing an image based comparison test is only a little more difficult than the simple testcase presented
above. We have adapted matplotlib’s image comparison test utility into an easy to use assert method :

self.assert_images_similar(visualizer)

The main consideration is that you must specify the “baseline” , or expected, image in the tests/

158 Chapter 4. B

http://docs.python-requests.org/en/master/

Yellowbrick Documentation, & %5 v0.5

baseline_images/ folder structure.

For example, create your unittest located in tests/test_regressor/test_myvisualizer.py as follows:

from tests.base import VisualTestCase

def test_my_visualizer_output(self):

visualizer = MyVisualizer()
visualizer.fit (X)
visualizer.poof ()

self .assert_images_similar(visualizer)

The first time this test is run, there will be no baseline image to compare against, so the
test will fail. Copy the output images (in this case tests/actual_images/test_regressor/
test_myvisualizer/test_my_visualizer_output.png) to the correct subdirectory of baseline images
tree in the source directory (in this case tests/baseline_images/test_regressor/test_myvisualizer/
test_my_visualizer_output.png). Put this new file under source code revision control (with git add).

When rerunning the tests, they should now pass.

We also have a helper script, tests/images.py to clean up and manage baseline images automatically. It
is run using the python -m command to execute a module as main, and it takes as an argument the path to

your test file. To copy the figures as above:

$ python -m tests.images tests/test_regressor/test_myvisualizer.py

This will move all related test images from actual_images to baseline_images on your behalf (note you’ll
have had to run the tests at least once to generate the images). You can also clean up images from both

actual and baseline as follows:

$ python -m tests.images -C tests/test_regressor/test_myvisualizer.py

This is useful particularly if you’re stuck trying to get an image comparison to work. For more information

on the images helper script, use python -m tests.images --help.

Documentation

The initial documentation for your visualizer will be a well structured docstring. Yellowbrick uses Sphinx
to build documentation, therefore docstrings should be written in reStructuredText in numpydoc format
(similar to scikit-learn). The primary location of your docstring should be right under the class definition,

here is an example:

class MyVisualizer(Visualizer):

nmnn

(T gk%E)

4.5. Contributing 159

Yellowbrick Documentation, %45 v0.5

(8:EW)

This initial section should describe the visualizer and what
it's about, including how to use it. Take as many paragraphs

as needed to get as much detail as possible.

In the next section describe the parameters to __ainit__.

Parameters

model : a scikit-learn regressor
Should be an instance of a regressor, and specifically one whose name
ends with "CV" otherwise a will raise a YellowbrickTypeError exception
on instantiation. To use nmon-CV regressors see:

" "ManualAlphaSelection™ .

az : matplotlidb Azes, default: None
The azes to plot the figure on. If None is passed in the current azes

will be used (or generated if required).

kwargs : dict
Keyword arguments that are passed to the base class and may influence

the visualization as defined in other Visualizers.

Ezamples

>>> model = MyVisualizer()
>>> model. fit (X)
>>> model.poof()

In the notes section specify any gotchas or other info.

nmnn

When your visualizer is added to the API section of the documentation, this docstring will be rendered in

HTML to show the various options and functionality of your visualizer!

To add the visualizer to the documentation it needs to be added to the docs/api folder in the correct

subdirectory. For example if your visualizer is a model score visualizer related to regression it would go in

160 Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

the docs/api/regressor subdirectory. If you have a question where your documentation should be located,

please ask the maintainers via your pull request, we’d be happy to help!
There are two primary files that need to be created:
1. mymodule.rst: the reStructuredText document
2. mymodule.py: a python file that generates images for the rst document

There are quite a few examples in the documentation on which you can base your files of similar types. The

primary format for the API section is as follows:

—*— mode: rst —*-

My Visualizer

Intro to my visualizer

code:: python

Example to run MyVisualizer

visualizer = MyVisualizer(LinearRegression())

visualizer.fit(X, y)

g = visualizer.poof ()

image:: images/my_visualizer.png

Discussion about my visualizer

API Reference

. automodule:: yellowbrick.regressor.mymodule
:members: MyVisualizer
:undoc-members:

:show-inheritance:

This is a pretty good structure for a documentation page; a brief introduction followed by a code example
with a visualization included (using the mymodule.py to generate the images into the local directory’s images

subdirectory). The primary section is wrapped up with a discussion about how to interpret the visualizer

4.5. Contributing 161

Yellowbrick Documentation, 445 v0.5

and use it in practice. Finally the APT Reference section will use automodule to include the documentation

from your docstring.

At this point there are several places where you can list your visualizer, but to ensure it is included in the
documentation it must be listed in the TOC of the local indez. Find the index.rst file in your subdirectory
and add your rst file (without the .rst extension) to the ..toctree:: directive. This will ensure the

documentation is included when it is built.

Speaking of, you can build your documentation by changing into the docs directory and running make html,
the documentation will be built and rendered in the _build/html directory. You can view it by opening

_build/html/index.html then navigating to your documentation in the browser.
There are several other places that you can list your visualizer including:

e docs/index.rst for a high level overview of our visualizers

e DESCRIPTION.rst for inclusion on PyPI

e README.md for inclusion on GitHub

Please ask for the maintainer’s advice about how to include your visualizer in these pages.

4.5.3 Advanced Development

In this section we discuss more advanced contributing guidelines including setting up branches for devel-
opment as well as the release cycle. This section is intended for maintainers and core contributors of the
Yellowbrick project. If you would like to be a maintainer please contact one of the current maintainers of

the project.

Branching Convention

The Yellowbrick repository is set up in a typical production/release/development cycle as described in ”A
Successful Git Branching Model.” The primary working branch is the develop branch. This should be the
branch that you are working on and from, since this has all the latest code. The master branch contains
the latest stable version and release, which is pushed to PyPI. No one but core contributors will generally

push to master.

{Ef#: All pull requests should be into the yellowbrick/develop branch from your forked repository.

You can work directly in your fork and create a pull request from your fork’s develop branch into ours. We
also recommend setting up an upstream remote so that you can easily pull the latest development changes

from the main Yellowbrick repository (see configuring a remote for a fork). You can do that as follows:

162 Chapter 4. B

http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/
https://github.com/DistrictDataLabs/yellowbrick/releases
https://pypi.python.org/pypi/yellowbrick
https://help.github.com/articles/configuring-a-remote-for-a-fork/

Yellowbrick Documentation, & %5 v0.5

$ git remote add upstream https://github.com/DistrictDatalabs/yellowbrick.git
$ git remote -v

origin https://github.com/YOUR_USERNAME/YOUR_FORK.git (fetch)

origin https://github.com/YOUR_USERNAME/YOUR_FORK.git (push)

upstream https://github.com/DistrictDatalabs/yellowbrick.git (fetch)
upstream https://github.com/DistrictDatalabs/yellowbrick.git (push)

When you'’re ready, request a code review for your pull request. Then, when reviewed and approved, you
can merge your fork into our main branch. Make sure to use the "Squash and Merge” option in order to

create a Git history that is understandable.

#fR: When merging a pull request, use the “squash and merge” option.

Core contributors have write access to the repository. In order to reduce the number of merges (and merge

conflicts) we recommend that you utilize a feature branch off of develop to do intermediate work in:

$ git checkout -b feature-myfeature develop

Once you are done working (and everything is tested) merge your feature into develop.:

$ git checkout develop
$ git merge --no-ff feature-myfeature
$ git branch -d feature-myfeature

$ git push origin develop

Head back to Waffle and checkout another issue!

Releases

When ready to create a new release we branch off of develop as follows:

$ git checkout -b release-x.x

This creates a release branch for version x.x. At this point do the version bump by modifying version.py and
the test version in tests/__init__.py. Make sure all tests pass for the release and that the documentation
is up to date. There may be style changes or deployment options that have to be done at this phase in the

release branch. At this phase you’ll also modify the changelog with the features and changes in the release.

Once the release is ready for prime-time, merge into master:

$ git checkout master

$ git merge --no-ff --no-edit release-x.x

4.5. Contributing 163

Yellowbrick Documentation, 445 v0.5

Tag the release in GitHub:

$ git tag -a vx.x

$ git push origin vx.x

You'll have to go to the release page to edit the release with similar information as added to the changelog.

Once done, push the release to PyPI:

$ make build
$ make deploy

Check that the PyPI page is updated with the correct version and that pip install -U yellowbrick
updates the version and works correctly. Also check the documentation on PyHosted, ReadTheDocs, and

on our website to make sure that it was correctly updated. Finally merge the release into develop and clean

up:

$ git checkout develop
$ git merge --no-ff --no-edit release-x.x

$ git branch -d release-x.x

Hotfixes and minor releases also follow a similar pattern; the goal is to effectively get new code to users as

soon as possible!

4.6 Effective Matplotlib

Yellowbrick generates visualizations by wrapping matplotlib, the most prominent Python scientific visual-
ization library. Because of this, Yellowbrick is able to generate publication-ready images for a variety of
GUI backends, image formats, and Jupyter notebooks. Yellowbrick strives to provide well-styled visual di-
agnostic tools and complete information. However, to customize figures or roll your own visualizers, a strong

background in using matplotlib is required.

With permission, we have included part of Chris Moffitt’s Effectively Using Matplotlib as a crash course
into Matplotlib terminology and usage. For a complete example, please visit his excellent post on creating
a visual sales analysis! Additionally we recommend Nicolas P. Rougier’s Matplotlib tutorial for an in-depth

dive.

4.6.1 Figures and Axes

This graphic from the matplotlib faq is gold. Keep it handy to understand the different terminology of a
plot.

164 Chapter 4. B

https://github.com/DistrictDataLabs/yellowbrick/releases
http://matplotlib.org/
https://github.com/chris1610
http://pbpython.com/effective-matplotlib.html
https://www.labri.fr/perso/nrougier/teaching/matplotlib/
https://matplotlib.org/faq/usage_faq.html

Yellowbrick Documentation, & %5 v0.5

@ Ana‘uy of a figure

Title

Major tick

@

Minor tick

C

Major tick label

— B} 3l
— Re& i

i
I
|
I
: Legend
I
I
I
I

U T T
0 0.251?5 1.25 1.50 1~ 2 2.25 2.50 2.75 3.25 350 3.75 4
. . 5 label
Mineor tick label

Made with http:fmatplotlib.org

Line
y © (line plot)
| o
z o ° K o
= 9 0®
T e e e o T = — e — T —— —— — —]
| a 2 o © < o | = el
e] Gg o i o © ° cfj]
¥ axis label © 0{}! o o S ﬁﬂi}hrkﬂs
0 © (scatter plot)
- e °© o & |
: a o0 |
1- — -5
\? !
-] I
O . =
- Q : @ : Spines
Figure Line ! T
- Axes (line plot) i
' |
|
|
|
3

_—t

X axis label

Most of the terms are straightforward but the main thing to remember is that the Figure is the final image
that may contain 1 or more axes. The Axes represent an individual plot. Once you understand what these

are and how to access them through the object oriented API, the rest of the process starts to fall into place.

The other benefit of this knowledge is that you have a starting point when you see things on the web. If you
take the time to understand this point, the rest of the matplotlib API will start to make sense.

Matplotlib keeps a global reference to the global figure and axes objects which can be modified by the pyplot
API. To access this import matplotlib as follows:

import matplotlib.pyplot as plt

axes = plt.gca()

The plt.gca() function gets the current axes so that you can draw on it directly. You can also directly

create a figure and axes as follows:

4.6. Effective Matplotlib 165

Yellowbrick Documentation, 445 v0.5

fig = plt.figure()
ax = fig.add_subplot(111)

Yellowbrick will use plt.gca() by default to draw on. You can access the Axes object on a visualizer via

its ax property:

from sklearn.linear_model import LinearRegression

from yellowbrick.regressor import PredictionError

Fit the visualizer

model = PredictionError(LinearRegression())
model.fit(X_train, y_train)
model.score(X_test, y_test)

Call finalize to draw the final yellowbrick-specific elements

model.finalize()

Get access to the azes object and modify labels

model.ax.set_xlabel("measured concrete strength")

model .ax.set_ylabel("predicted concrete strength")
plt.savefig("peplot.pdf")

You can also pass an external Axes object directly to the visualizer:

model = PredictionError(LinearRegression(), ax=ax)

Therefore you have complete control of the style and customization of a Yellowbrick visualizer.

4.6.2 Creating a Custom Plot

matplotlib customization example
fig, (ax0, ax1) = plt.subplots(nrows=1,ncols=2, sharey=True, figsize=(7, 4))

fig.suptitle('2014 Sales Analysis', fontsize=14, fontweight='bold')

il

top_10.plot(kind="'barh', y="Sales",
x="Nam

! top_106.plot(kind='barh', y="Purchases",
ame", ax=ax@) X="N: 1

ame", ax=ax1)
2014 Sales Analysis

Revenue Units
Keeling LLC -
Frami, Hills and Schmidt - I -
oepp Ltd - I - i e
Koepp g axl.axvline(x=avg, color='b',
B win Lic - — label="Average',
§ N — — linestyle='--',
£ linewidth=1)
£ Fritsch, Rus I I
F
e I -
White-Trantow - [N -
Kulas Inc -
0 50000 100000 0 2 4 & 8
Total Revenue Total Units
ax0.set_x1im([-10000, 140000])
ax@.set(title='Revenue', xlabel='Total axl.set(title='Units',
Revenue', ylabel='Customers') xlabel='Total Units', ylabel=''")

fig.savefig('sales.png', transparent=False, dpi=80, bbox_inches="tight")

pbpython.com

166 Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

The first step with any visualization is to plot the data. Often the simplest way to do this is using the
standard pandas plotting function (given a DataFrame called top_10):

top_10.plot(kind='barh', y="Sales", x="Name")

The reason I recommend using pandas plotting first is that it is a quick and easy way to prototype your
visualization. Since most people are probably already doing some level of data manipulation/analysis in

pandas as a first step, go ahead and use the basic plots to get started.

Assuming you are comfortable with the gist of this plot, the next step is to customize it. Some of the
customizations (like adding titles and labels) are very simple to use with the pandas plot function. However,
you will probably find yourself needing to move outside of that functionality at some point. That’s why it

is recommended to create your own Axes first and pass it to the plotting function in Pandas:

fig, ax = plt.subplots()
top_10.plot(kind='barh', y="Sales", x="Name", ax=ax)

The resulting plot looks exactly the same as the original but we added an additional call to p1t.subplots()
and passed the ax to the plotting function. Why should you do this? Remember when I said it is critical
to get access to the axes and figures in matplotlib? That’ s what we have accomplished here. Any future

customization will be done via the ax or fig objects.

We have the benefit of a quick plot from pandas but access to all the power from matplotlib now. An example
should show what we can do now. Also, by using this naming convention, it is fairly straightforward to adapt

others’ solutions to your unique needs.

Suppose we want to tweak the x limits and change some axis labels? Now that we have the axes in the ax

variable, we have a lot of control:

fig, ax = plt.subplots()

top_10.plot(kind='barh', y="Sales", x="Name", ax=ax)
ax.set_x1im([-10000, 140000])

ax.set_xlabel('Total Revenue')

ax.set_ylabel('Customer');

Here’ s another shortcut we can use to change the title and both labels:

fig, ax = plt.subplots()
top_10.plot(kind='barh', y="Sales", x="Name", ax=ax)
ax.set_x1im([-10000, 140000])

ax.set(title='2014 Revenue', xlabel='Total Revenue', ylabel='Customer')

To further demonstrate this approach, we can also adjust the size of this image. By using the plt.
subplots() function, we can define the figsize in inches. We can also remove the legend using ax.

legend() .set_visible(False):

4.6. Effective Matplotlib 167

Yellowbrick Documentation, 445 v0.5

fig, ax = plt.subplots(figsize=(5, 6))
top_10.plot(kind='barh', y="Sales", x="Name", ax=ax)
ax.set_x1im([-10000, 140000]1)

ax.set(title='2014 Revenue', xlabel='Total Revenue')

ax.legend() .set_visible(False)

There are plenty of things you probably want to do to clean up this plot. One of the biggest eye sores
is the formatting of the Total Revenue numbers. Matplotlib can help us with this through the use of the
FuncFormatter . This versatile function can apply a user defined function to a value and return a nicely

formatted string to place on the axis.

Here is a currency formatting function to gracefully handle US dollars in the several hundred thousand dollar

range:

def currency(x, pos):

nmnn

The two args are the value and tick postition
mnmn
if x >= 1000000:

return '$ M'.format(x*1le-6)

return '$ K'.format(x*le-3)

Now that we have a formatter function, we need to define it and apply it to the x axis. Here is the full code:

fig, ax = plt.subplots()

top_10.plot(kind='barh', y="Sales", x="Name", ax=ax)
ax.set_x1im([-10000, 140000])

ax.set(title='2014 Revenue', xlabel='Total Revenue', ylabel='Customer')
formatter = FuncFormatter(currency)

ax.xaxis.set_major_formatter (formatter)

ax.legend() .set_visible(False)

That’ s much nicer and shows a good example of the flexibility to define your own solution to the problem.

The final customization feature I will go through is the ability to add annotations to the plot. In order to

draw a vertical line, you can use ax.axvline() and to add custom text, you can use ax.text().

For this example, we’ 1l draw a line showing an average and include labels showing three new customers.

Here is the full code with comments to pull it all together.

Create the figure and the azes

fig, ax = plt.subplots()

(Fwgksr)

168 Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

(8:EW)

Plot the data and get the average
top_10.plot(kind='barh', y="Sales", x="Name", ax=ax)
avg = top_10['Sales'] .mean()

Set limits and labels
ax.set_x1im([-10000, 140000])

ax.set(title='2014 Revenue', xlabel='Total Revenue', ylabel='Customer')

Add a line for the average

ax.axvline(x=avg, color='b', label='Average', linestyle='--', linewidth=1)

Annotate the new customers
for cust in [3, 5, 8]:
ax.text (115000, cust, "New Customer")

Format the currency
formatter = FuncFormatter(currency)

ax.xaxis.set_major_formatter (formatter)

Hide the legend
ax.legend() .set_visible(False)

2014 Revenue

Keeling LLC -
Frami, Hills and Schmidt - Mew Customer
Koepp Lid -

Will LLC -

Barton LLC - Mew Customer

Fritsch, Russel and Anderson -

Customer

Jerde-Hilpert - Mew Customer

i
[
[
|
[
[
|
[
[
[
|
[
|
[
|
|
|
[
|
Trantow-Barrows -

White-Trantow -

Kulas Imc -

S0k 20K 40K 360K 380K S100K $120K S140K
Total Revenue

While this may not be the most exciting plot it does show how much power you have when following this

approach.

4.6. Effective Matplotlib 169

Yellowbrick Documentation, 445 v0.5

Up until now, all the changes we have made have been with the individual plot. Fortunately, we also have

the ability to add multiple plots on a figure as well as save the entire figure using various options.

If we decided that we wanted to put two plots on the same figure, we should have a basic understanding of
how to do it. First, create the figure, then the axes, then plot it all together. We can accomplish this using

plt.subplots():

fig, (ax0, axl) = plt.subplots(nrows=1, ncols=2, sharey=True, figsize=(7, 4))

In this example, I’ m using nrows and ncols to specify the size because this is very clear to the new user.
In sample code you will frequently just see variables like 1,2. T think using the named parameters is a little

easier to interpret later on when you’ re looking at your code.
I am also using sharey=True so that the y-axis will share the same labels.

This example is also kind of nifty because the various axes get unpacked to ax0 and ax1. Now that we have

these axes, you can plot them like the examples above but put one plot on ax0 and the other on ax1.

Get the figure and the azes

fig, (ax0, axl) = plt.subplots(nrows=1,ncols=2, sharey=True, figsize=(7, 4))
top_10.plot(kind='barh', y="Sales", x="Name", ax=ax0)

ax0.set_x1im([-10000, 140000])

ax0.set(title='Revenue', xlabel='Total Revenue', ylabel='Customers')

Plot the average as a vertical line
avg = top_10['Sales'].mean()

ax0.axvline(x=avg, color='b', label='Average', linestyle='--', linewidth=1)

Repeat for the unit plot

top_10.plot(kind='barh', y="Purchases", x="Name", ax=axl)
avg = top_10['Purchases'] .mean()

axl.set(title='Units', xlabel='Total Units', ylabel='"')

axl.axvline(x=avg, color='b', label='Average', linestyle='--', linewidth=1)

Title the figure
fig.suptitle('2014 Sales Analysis', fontsize=14, fontweight='bold');

Hide the legends
axl.legend() .set_visible(False)
ax0.legend() .set_visible(False)

When writing code in a Jupyter notebook you can take advantage of the Y%matplotlib inline or
%matplotlib notebook directives to render figures inline. More often, however, you probably want to

save your images to disk. Matplotlib supports many different formats for saving files. You can use fig.

170 Chapter 4. B

Yellowbrick Documentation, & %5 v0.5

canvas.get_supported_filetypes() to see what your system supports:

fig.canvas.get_supported_filetypes()

{'eps': 'Encapsulated Postscript',
'jpeg': 'Joint Photographic Experts Group',
'jpg': 'Joint Photographic Experts Group',
'pdf': 'Portable Document Format',
'pgf': 'PGF code for LaTeX',
'png': 'Portable Network Graphics',
'ps': 'Postscript’',
'raw': 'Raw RGBA bitmap',
'rgba': 'Raw RGBA bitmap',
'svg': 'Scalable Vector Graphics',
'svgz': 'Scalable Vector Graphics',
'tif': 'Tagged Image File Format',

'tiff': 'Tagged Image File Format'}

Since we have the fig object, we can save the figure using multiple options:

fig.savefig('sales.png', transparent=False, dpi=80, bbox_inches="tight")

This version saves the plot as a png with opaque background. 1 have also specified the dpi and

bbox__inches="tight” in order to minimize excess white space.

4.6. Effective Matplotlib

171

Yellowbrick Documentation, k&% v0.5

4.7 About

Image by QuatroCinco, used with permission, Flickr Creative Commons.

Yellowbrick is an open source, pure Python project that extends the Scikit-Learn API with visual analysis
and diagnostic tools. The Yellowbrick APT also wraps Matplotlib to create publication-ready figures and in-
teractive data explorations while still allowing developers fine-grain control of figures. For users, Yellowbrick
can help evaluate the performance, stability, and predictive value of machine learning models, and assist in

diagnosing problems throughout the machine learning workflow.

Recently, much of this workflow has been automated through grid search methods, standardized APIs, and
GUI-based applications. In practice, however, human intuition and guidance can more effectively hone in on
quality models than exhaustive search. By visualizing the model selection process, data scientists can steer

towards final, explainable models and avoid pitfalls and traps.

The Yellowbrick library is a diagnostic visualization platform for machine learning that allows data scientists
to steer the model selection process. Yellowbrick extends the Scikit-Learn API with a new core object: the
Visualizer. Visualizers allow visual models to be fit and transformed as part of the Scikit-Learn Pipeline

process, providing visual diagnostics throughout the transformation of high dimensional data.

172 Chapter 4. B

https://flic.kr/p/2Yj9mj
http://scikit-learn.org/stable/modules/classes.html

Yellowbrick Documentation, & %5 v0.5

4.7.1 Model Selection

Discussions of machine learning are frequently characterized by a singular focus on model selection. Be
it logistic regression, random forests, Bayesian methods, or artificial neural networks, machine learning
practitioners are often quick to express their preference. The reason for this is mostly historical. Though
modern third-party machine learning libraries have made the deployment of multiple models appear nearly
trivial, traditionally the application and tuning of even one of these algorithms required many years of study.
As a result, machine learning practitioners tended to have strong preferences for particular (and likely more

familiar) models over others.

)

However, model selection is a bit more nuanced than simply picking the "right” or "wrong” algorithm. In

practice, the workflow includes:
1. selecting and/or engineering the smallest and most predictive feature set
2. choosing a set of algorithms from a model family, and
3. tuning the algorithm hyperparameters to optimize performance.

The model selection triple was first described in a 2015 SIGMOD paper by Kumar et al. In their paper,
which concerns the development of next-generation database systems built to anticipate predictive modeling,
the authors cogently express that such systems are badly needed due to the highly experimental nature of
machine learning in practice. "Model selection,” they explain, ”is iterative and exploratory because the
space of [model selection triples] is usually infinite, and it is generally impossible for analysts to know a

priori which [combination] will yield satisfactory accuracy and/or insights.”

Recently, much of this workflow has been automated through grid search methods, standardized APIs, and
GUI-based applications. In practice, however, human intuition and guidance can more effectively hone in on
quality models than exhaustive search. By visualizing the model selection process, data scientists can steer

towards final, explainable models and avoid pitfalls and traps.

The Yellowbrick library is a diagnostic visualization platform for machine learning that allows data scientists
to steer the model selection process. Yellowbrick extends the Scikit-Learn API with a new core object: the
Visualizer. Visualizers allow visual models to be fit and transformed as part of the Scikit-Learn Pipeline

process, providing visual diagnostics throughout the transformation of high dimensional data.

4.7.2 Name Origin

The Yellowbrick package gets its name from the fictional element in the 1900 children’s novel The Won-
derful Wizard of Oz by American author L. Frank Baum. In the book, the yellow brick road is the path

that the protagonist, Dorothy Gale, must travel in order to reach her destination in the Emerald City.

From Wikipedia: "The road is first introduced in the third chapter of The Wonderful Wizard of Oz. The
road begins in the heart of the eastern quadrant called Munchkin Country in the Land of Oz. It
functions as a guideline that leads all who follow it, to the road’s ultimate destination—the imperial

capital of Oz called Emerald City that is located in the exact center of the entire continent. In the

4.7. About 173

http://cseweb.ucsd.edu/~arunkk/vision/SIGMODRecord15.pdf
https://en.wikipedia.org/wiki/Yellow_brick_road

Yellowbrick Documentation, 445 v0.5

book, the novel’s main protagonist, Dorothy, is forced to search for the road before she can begin her
quest to seek the Wizard. This is because the cyclone from Kansas did not release her farmhouse closely
near it as it did in the various film adaptations. After the council with the native Munchkins and their
dear friend the Good Witch of the North, Dorothy begins looking for it and sees many pathways and
roads nearby, (all of which lead in various directions). Thankfully it doesn’t take her too long to spot

the one paved with bright yellow bricks.”

4.7.3 Team

Yellowbrick is is developed by data scientists who believe in open source and the project enjoys contributions
from Python developers all over the world. The project was started by @rebeccabilbro and @bbengfort as
an attempt to better explain machine learning concepts to their students; they quickly realized, however,
that the potential for visual steering could have a large impact on practical data science and developed it

into a high-level Python library.

Yellowbrick is incubated by District Data Labs, an organization that is dedicated to collaboration and
open source development. As part of District Data Labs, Yellowbrick was first introduced to the Python
Community at PyCon 2016 in both talks and during the development sprints. The project was then carried
on through DDL Research Labs (semester-long sprints where members of the DDL community contribute

to various data related projects).

4.7.4 License

Yellowbrick is an open source project and its license is an implementation of the FOSS Apache 2.0 license by
the Apache Software Foundation. In plain English this means that you can use Yellowbrick for commercial
purposes, modify and distribute the source code, and even sublicense it. We want you to use Yellowbrick,

profit from it, and contribute back if you do cool things with it.

There are, however, a couple of requirements that we ask from you. First, when you copy or distribute
Yellowbrick source code, please include our copyright and license found in the LICENSE.txt at the root of
our software repository. In addition, if we create a file called "NOTICE” in our project you must also include
that in your source distribution. The "NOTICE” file will include attribution and thanks to those who have
worked so hard on the project! Finally you can’t hold District Data Labs or any Yellowbrick contributor

liable for your use of our software, nor use any of our names, trademarks, or logos.

We think that’s a pretty fair deal, and we’re big believers in open source. If you make any changes to our

software, use it commercially or academically, or have any other interest, we’d love to hear about it.

4.7.5 Presentations

Yellowbrick has enjoyed the spotlight at a few conferences and in several presentations. We hope that these

videos, talks, and slides will help you understand Yellowbrick a bit better.

174 Chapter 4. HF

https://github.com/rebeccabilbro
https://github.com/bbengfort
http://www.districtdatalabs.com/
https://youtu.be/c5DaaGZWQqY
https://github.com/DistrictDataLabs/yellowbrick/blob/master/LICENSE.txt
http://www.apache.org/licenses/LICENSE-2.0
https://tldrlegal.com/license/apache-license-2.0-(apache-2.0)
https://github.com/DistrictDataLabs/yellowbrick/blob/master/LICENSE.txt

Yellowbrick Documentation, & %5 v0.5

Videos:

« Visual Diagnostics for More Informed Machine Learning: Within and Beyond Scikit-Learn (PyCon
2016)

¢ Visual Diagnostics for More Informed Machine Learning (PyData Carolinas 2016)

e Yellowbrick: Steering Machine Learning with Visual Transformers (PyData London 2017)
Slides:

o Visualizing the Model Selection Process

o Visualizing Model Selection with Scikit-Yellowbrick

« Visual Pipelines for Text Analysis (Data Intelligence 2017)

4.8 Changelog

4.8.1 Version 0.5

e Tag: v0.5
o Deployed: Wednesday, August 9, 2017

e Contributors: Benjamin Bengfort, Rebecca Bilbro, Nathan Danielsen, Carlo Morales, Jim Stearns,

Phillip Schafer, Jason Keung
Changes:
¢ Added VisualTestCase.

¢ New PCADecomposition Visualizer, which decomposes high dimensional data into two or three

dimensions so that each instance can be plotted in a scatter plot.
e New and improved ROCAUC Visualizer, which now supports multiclass classification.

e Prototype Decision Boundary Visualizer, which is a bivariate data visualization algorithm that

plots the decision boundaries of each class.

¢ Added Rank1D Visualizer, which is a one dimensional ranking of features that utilizes the Shapiro-

Wilks ranking that takes into account only a single feature at a time (e.g. histogram analysis).
o Improved Prediction Error Plot with identity line, shared limits, and r squared.
o Updated FreqDist Visualizer to make word features a hyperparameter.
¢ Added normalization and scaling to Parallel Coordinates.

¢ Added Learning Curve Visualizer, which displays a learning curve based on the number of samples
versus the training and cross validation scores to show how a model learns and improves with

experience.

4.8. Changelog 175

https://youtu.be/c5DaaGZWQqY
https://youtu.be/c5DaaGZWQqY
https://youtu.be/cgtNPx7fJUM
https://youtu.be/2ZKng7pCB5k
https://www.slideshare.net/BenjaminBengfort/visualizing-the-model-selection-process
https://www.slideshare.net/BenjaminBengfort/visualizing-model-selection-with-scikityellowbrick-an-introduction-to-developing-visualizers
https://speakerdeck.com/dataintelligence/visual-pipelines-for-text-analysis
https://github.com/DistrictDataLabs/yellowbrick/releases/tag/v0.5

Yellowbrick Documentation, 445 v0.5

¢ Added data downloader module to the yellowbrick library.

o Complete overhaul of the yellowbrick documentation; categories of methods are located in separate

pages to make it easier to read and contribute to the documentation.
e Added a new color palette inspired by ANN-generated colors
Bug Fixes:
e Repairs to PCA, RadViz, FreqDist unit tests

o Repair to matplotlib version check in JointPlot Visualizer

4.8.2 Hotfix 0.4.2

Update to the deployment docs and package on both Anaconda and PyPI.
o Tag: v0.4.2
e Deployed: Monday, May 22, 2017

e Contributors: Benjamin Bengfort, Jason Keung

4.8.3 Version 0.4.1

This release is an intermediate version bump in anticipation of the PyCon 2017 sprints.

The primary goals of this version were to (1) update the Yellowbrick dependencies (2) enhance the Yellowbrick
documentation to help orient new users and contributors, and (3) make several small additions and upgrades

(e.g. pulling the Yellowbrick utils into a standalone module).

We have updated the Scikit-Learn and SciPy dependencies from version 0.17.1 or later to 0.18 or later.
This primarily entails moving from from sklearn.cross_validation import train_test_split to from

sklearn.model_selection import train_test_split.

The updates to the documentation include new Quickstart and Installation guides as well as updates to the

Contributors documentation, which is modeled on the Scikit-Learn contributing documentation.

This version also included upgrades to the KMeans visualizer, which now supports not only
silhouette_score but also distortion_score and calinski_harabaz_score. The distortion_score
computes the mean distortion of all samples as the sum of the squared distances between each observation
and its closest centroid. This is the metric that K-Means attempts to minimize as it is fitting the model. The
calinski_harabaz_score is defined as ratio between the within-cluster dispersion and the between-cluster

dispersion.

Finally, this release includes a prototype of the VisualPipeline, which extends Scikit-Learn’s Pipeline

class, allowing multiple Visualizers to be chained or sequenced together.

o Tag: v0.4.1

176 Chapter 4. B

http://lewisandquark.tumblr.com/
https://github.com/DistrictDataLabs/yellowbrick/releases/tag/v0.4.2
https://github.com/DistrictDataLabs/yellowbrick/releases/tag/v0.4.1

Yellowbrick Documentation, & %5 v0.5

e Deployed: Monday, May 22, 2017
e Contributors: Benjamin Bengfort, Rebecca Bilbro, Nathan Danielsen
Changes:

¢ Score and model visualizers now wrap estimators as proxies so that all methods on the estimator

can be directly accessed from the visualizer
e Updated Scikit-learn dependency from >=0.17.1 to >=0.18
e Replaced sklearn.cross_validation with model_selection
o Updated SciPy dependency from >=0.17.1 to >=0.18

o ScoreVisualizer now subclasses ModelVisualizer; towards allowing both fitted and unfitted models

passed to Visualizers
e Added CI tests for Python 3.6 compatibility
¢ Added new quickstart guide and install instructions
o Updates to the contributors documentation

e Added distortion_score and calinski_harabaz_score computations and visualizations to

KMeans visualizer.

¢ Replaced the self.ax property on all of the individual draw methods with a new property on the

Visualizer class that ensures all visualizers automatically have axes.
e Refactored the utils module into a package
e Continuing to update the docstrings to conform to Sphinx

e Added a prototype visual pipeline class that extends the Scikit-learn pipeline class to ensure that

visualizers get called correctly.
Bug Fixes:

o Fixed title bug in Rank2D FeatureVisualizer

4.8.4 Version 0.4

This release is the culmination of the Spring 2017 DDL Research Labs that focused on developing Yellowbrick
as a community effort guided by a sprint/agile workflow. We added several more visualizers, did a lot of user
testing and bug fixes, updated the documentation, and generally discovered how best to make Yellowbrick

a friendly project to contribute to.

Notable in this release is the inclusion of two new feature visualizers that use few, simple dimensions to
visualize features against the target. The JointPlotVisualizer graphs a scatter plot of two dimensions
in the data set and plots a best fit line across it. The ScatterVisualizer also uses two features, but also

colors the graph by the target variable, adding a third dimension to the visualization.

4.8. Changelog 177

Yellowbrick Documentation, 445 v0.5

This release also adds support for clustering visualizations, namely the elbow method for selecting K,

KElbowVisualizer and a visualization of cluster size and density using the SilhouetteVisualizer. The

release also adds support for regularization analysis using the AlphaSelection visualizer.

Both the

text and classification modules were also improved with the inclusion of the PosTagVisualizer and the

ConfusionMatrix visualizer respectively.

This release also added an Anaconda repository and distribution so that users can conda install yellow-

brick. Even more notable, we got yellowbrick stickers! We've also updated the documentation to make it

more friendly and a bit more visual; fixing the API rendering errors. All-in-all, this was a big release with a

lot of contributions and we thank everyone that participated in the lab!

o Tag: v0.4

e Deployed: Thursday, May 4, 2017

e Contributors: Benjamin Bengfort, Rebecca Bilbro, Nathan Danielsen, Matt Andersen, Prema Roman,

Neal Humphrey, Jason Keung, Bala Venkatesan, Paul Witt, Morgan Mendis, Tuuli Morril

Changes:

Part of speech tags visualizer — PosTagVisualizer.

Alpha selection visualizer for regularized regression — AlphaSelection
Confusion Matrix Visualizer — ConfusionMatrix

Elbow method for selecting K vis — KElbowVisualizer

Silhouette score cluster visualization — SilhouetteVisualizer

Joint plot visualizer with best fit — JointPlotVisualizer

Scatter visualization of features — ScatterVisualizer

Added three more example datasets: mushroom, game, and bike share
Contributor’s documentation and style guide

Maintainers listing and contacts

Light/Dark background color selection utility

Structured array detection utility

Updated classification report to use colormesh

Added anacondas packaging and distribution

Refactoring of the regression, cluster, and classification modules
Image based testing methodology

Docstrings updated to a uniform style and rendering

Submission of several more user studies

178

Chapter 4.

B®

https://github.com/DistrictDataLabs/yellowbrick/releases/tag/v0.4

Yellowbrick Documentation, & %5 v0.5

4.8.5 Version 0.3.3

Intermediate sprint to demonstrate prototype implementations of text visualizers for NLP models. Primary

contributions were the FreqDistVisualizer and the TSNEVisualizer.

The TSNEVisualizer displays a projection of a vectorized corpus in two dimensions using TSNE, a nonlinear
dimensionality reduction method that is particularly well suited to embedding in two or three dimensions for
visualization as a scatter plot. TSNE is widely used in text analysis to show clusters or groups of documents

or utterances and their relative proximities.

The FreqDistVisualizer implements frequency distribution plot that tells us the frequency of each vocab-
ulary item in the text. In general, it could count any kind of observable event. It is a distribution because

it tells us how the total number of word tokens in the text are distributed across the vocabulary items.
e Tag: v0.3.3
o Deployed: Wednesday, February 22, 2017
o Contributors: Rebecca Bilbro, Benjamin Bengfort
Changes:
o TSNEVisualizer for 2D projections of vectorized documents
o FreqDistVisualizer for token frequency of text in a corpus
e Added the user testing evaluation to the documentation
e Created scikit-yb.org and host documentation there with RFD
e Created a sample corpus and text examples notebook
e Created a base class for text, TextVisualizer
e Model selection tutorial using Mushroom Dataset

e Created a text examples notebook but have not added to documentation.

4.8.6 Version 0.3.2

Hardened the Yellowbrick API to elevate the idea of a Visualizer to a first principle. This included reconciling
shifts in the development of the preliminary versions to the new API, formalizing Visualizer methods like
draw() and finalize(), and adding utilities that revolve around Scikit-Learn. To that end we also performed
administrative tasks like refreshing the documentation and preparing the repository for more and varied

open source contributions.
o Tag: v0.3.2
e Deployed: Friday, January 20, 2017

e Contributors: Benjamin Bengfort, Rebecca Bilbro

4.8. Changelog 179

https://github.com/DistrictDataLabs/yellowbrick/releases/tag/v0.3.3
https://github.com/DistrictDataLabs/yellowbrick/releases/tag/v0.3.2

Yellowbrick Documentation, 445 v0.5

Changes:
e Converted Mkdocs documentation to Sphinx documentation
o Updated docstrings for all Visualizers and functions
¢ Created a DataVisualizer base class for dataset visualization
o Single call functions for simple visualizer interaction
e Added yellowbrick specific color sequences and palettes and env handling
e More robust examples with downloader from DDL host
o Better axes handling in visualizer, matplotlib/sklearn integration
e Added a finalize method to complete drawing before render
o Improved testing on real data sets from examples
o Bugfix: score visualizer renders in notebook but not in Python scripts.

o Bugfix: tests updated to support new API

4.8.7 Hotfix 0.3.1

Hotfix to solve pip install issues with Yellowbrick.
e Tag: v0.3.1
e Deployed: Monday, October 10, 2016
o Contributors: Benjamin Bengfort
Changes:
— Modified packaging and wheel for Python 2.7 and 3.5 compatibility
— Modified deployment to PyPI and pip install ability

— Fixed Travis-CI tests with the backend failures.

4.8.8 Version 0.3

This release marks a major change from the previous MVP releases as Yellowbrick moves towards direct
integration with Scikit-Learn for visual diagnostics and steering of machine learning and could therefore
be considered the first alpha release of the library. To that end we have created a Visualizer model which
extends sklearn.base.BaseEstimator and can be used directly in the ML Pipeline. There are a number of
visualizers that can be used throughout the model selection process, including for feature analysis, model

selection, and hyperparameter tuning.

180 Chapter 4. B

https://github.com/DistrictDataLabs/yellowbrick/releases/tag/v0.3.1a2

Yellowbrick Documentation, & %5 v0.5

In this release specifically we focused on visualizers in the data space for feature analysis and visualizers in
the model space for scoring and evaluating models. Future releases will extend these base classes and add

more functionality.
o Tag: v0.3
e Deployed: Sunday, October 9, 2016
e Contributors: Benjamin Bengfort, Rebecca Bilbro, Marius van Niekerk
Enhancements:
— Created an API for visualization with machine learning: Visualizers that are BaseEstimators.

— Created a class hierarchy for Visualizers throughout the ML process particularly feature

analysis and model evaluation

— Visualizer interface is draw method which can be called multiple times on data or model

spaces and a poof method to finalize the figure and display or save to disk.

— ScoreVisualizers wrap Scikit-Learn estimators and implement fit and predict (pass-throughs
to the estimator) and also score which calls draw in order to visually score the estimator. If

the estimator isn’t appropriate for the scoring method an exception is raised.

— ROCAUC is a ScoreVisualizer that plots the receiver operating characteristic curve and dis-

plays the area under the curve score.

— ClassificationReport is a ScoreVisualizer that renders the confusion matrix of a classifier as a

heatmap.

— PredictionError is a ScoreVisualizer that plots the actual vs. predicted values and the 45

degree accuracy line for regressors.

— ResidualPlot is a ScoreVisualizer that plots the residuals (y - yhat) across the actual values

(y) with the zero accuracy line for both train and test sets.
— ClassBalance is a ScoreVisualizer that displays the support for each class as a bar plot.

— FeatureVisualizers are Scikit-Learn Transformers that implement fit and transform and oper-

ate on the data space, calling draw to display instances.

— ParallelCoordinates plots instances with class across each feature dimension as line segments

across a horizontal space.

— RadViz plots instances with class in a circular space where each feature dimension is an arc

around the circumference and points are plotted relative to the weight of the feature.

— Rank2D plots pairwise scores of features as a heatmap in the space [-1, 1] to show relative
importance of features. Currently implemented ranking functions are Pearson correlation and

covariance.

4.8. Changelog 181

https://github.com/DistrictDataLabs/yellowbrick/releases/tag/v0.3

Yellowbrick Documentation, 445 v0.5

— Coordinated and added palettes in the bgrmyck space and implemented a version of the
Seaborn set_ palette and set_ color_codes functions as well as the ColorPalette object and

other matplotlib.rc modifications.

— Inherited Seaborn’s notebook context and whitegrid axes style but make them the default,
don’t allow user to modify (if they’d like to, they’ll have to import Seaborn). This gives
Yellowbrick a consistent look and feel without giving too much work to the user and prepares
us for Matplotlib 2.0.

— Jupyter Notebook with Examples of all Visualizers and usage.
Bug Fixes:

— Fixed Travis-CI test failures with matplotlib.use(’Agg’).

— Fixed broken link to Quickstart on README

— Refactor of the original APT to the Scikit-Learn Visualizer API

4.8.9 Version 0.2

Intermediate steps towards a complete API for visualization. Preparatory stages for Scikit-Learn visual

pipelines.

o Tag: v0.2

e Deployed: Sunday, September 4, 2016

e Contributors: Benjamin Bengfort, Rebecca Bilbro, Patrick O’'Melveny, Ellen Lowy, Laura Lorenz

Changes:

— Continued attempts to fix the Travis-CI Scipy install failure (broken tests)
— Utility function: get the name of the model
— Specified a class based API and the basic interface (render, draw, fit, predict, score)

— Added more documentation, converted to Sphinx, autodoc, docstrings for viz methods, and

a quickstart
— How to contribute documentation, repo images etc.
— Prediction error plot for regressors (mvp)
— Residuals plot for regressors (mvp)
— Basic style settings a la seaborn
— ROC/AUC plot for classifiers (mvp)
— Best fit functions for "select best”, linear, quadratic

— Several Jupyter notebooks for examples and demonstrations

182 Chapter 4. B

https://github.com/DistrictDataLabs/yellowbrick/releases/tag/v0.2

Yellowbrick Documentation, & %5 v0.5

4.8.10 Version 0.1

Created the yellowbrick library MVP with two primary operations: a classification report heat map and a
ROC/AUC curve model analysis for classifiers. This is the base package deployment for continuing yellow-

brick development.
o Tag: v0.1
e Deployed: Wednesday, May 18, 2016
e Contributors: Benjamin Bengfort, Rebecca Bilbro
Changes:
— Created the Anscombe quartet visualization example

— Added DDL specific color maps and a stub for more style handling

Created crplot which visualizes the confusion matrix of a classifier

Created rocplot_ compare which compares two classifiers using ROC/AUC metrics

Stub tests/stub documentation

4.8. Changelog 183

https://github.com/DistrictDataLabs/yellowbrick/releases/tag/v0.1

Yellowbrick Documentation, 445 v0.5

184 Chapter 4. B

CHAPTER b

E 5| F1RE

e genindex
e modindex

FHi¥: Juan L. Kehoe

185

https://juan0001.github.io/

Yellowbrick Documentation, 445 v0.5

186 Chapter 5. F&5|fIRig

Python &R % 5|

y

yellowbrick.
yellowbrick.
yellowbrick.

81

yellowbrick.
yellowbrick.
yellowbrick.
yellowbrick.
yellowbrick.
yellowbrick.
yellowbrick.
yellowbrick.
yellowbrick.
yellowbrick.
yellowbrick.
yellowbrick.
yellowbrick.
yellowbrick.
yellowbrick.
yellowbrick.
yellowbrick.
yellowbrick.
yellowbrick.

anscombe,

classifier

classifier

classifier

37

classifier.rocauc, 87

classifier

cluster.elbow, 95

cluster.silhouette, 97

features.importances, 58

features
features
features
features.
features

features.

.jointplot, 65
.pca, 52
.pcoords, 48

radviz, 40

.rankd, 44

scatter, 63

regressor.alphas, 76

regressor.residuals, 69

style.colors, 146

style.palettes, 147

style.rcmod, 148

text.freqdist, 105

text.tsne, 110

.class_balance, 91

.classification_report,

.confusion_matrix, 84

.threshold, 93

187

Yellowbrick Documentation, 445 v0.5

188 Python {ERET|

=5

A

AlphaSelection (yellowbrick.regressor.alphas &4
%), 76
anscombe () ({£ yellowbrick.anscombe ¥ +), 37

C

ClassBalance (yellowbrick.classifier.class_balance

ey k), 91

ClassificationReport (yellow-

brick.classifier.classification__report i
a9%), 81

color_palette() (f£ yellowbrick.style.palettes 423k
), 147

ColorMap (yellowbrick.style.colors Fa43k), 146

colors (yellowbrick.style.colors. ColorMap /& 1k), 146

draw() (yellowbrick.cluster.elbow. KElbow Visualizer
7 i%k), 96

draw() (yellowbrick.cluster.silhouette.SilhouetteVisualizer
7 ik), 97

draw() (yellowbrick.features.importances. FeatureImportances
7 i%k), 59

draw() (yellowbrick.features.jointplot. JointPlot Visualizer
7 ik), 67

draw() (yellowbrick.features.pca. PCADecomposition
7 i%k), 53

draw() (yellowbrick.features.pcoords. ParallelCoordinates
7 %), 50

draw() (yellowbrick.features.radviz. Radial Visualizer
7 i%k), 40

draw() (yellowbrick.features.rankd. Rank1D 7 i%), 45

ConfusionMatrix (yellow- draw() (yellowbrick.features.rankd. Rank2D 7 i%), 46
brick.classifier.confusion__matriz + 8y draw() (yellowbrick.features.scatter.Scatter Visualizer
%), 84 7 ik), 64
count () (yellowbrick.text.freqdist. Frequency Visualizer draw() (yellowbrick.regressor.alphas. AlphaSelection
7 %), 106 Zrik), 77
draw() (yellowbrick.regressor.alphas. ManualAlphaSelection
D Zik), 79
draw() (yellowbrick.classifier.class_balance. ClassBalanggay () (yellowbrick.regressor.residuals. PredictionError
7ri%), 91 Srik), 74
draw () (yellowbrick.classifier.classification__report. Clasa%%éoaﬁ?mmck. regressor.residuals. ResidualsPlot
7 ik), 82 k), 70
draw () (yellowbrick.classifier.confusion__matriz. Confusé%WT@ellowbrick. teat.freqdist. Frequency Visualizer
7 i%), 85 %), 106
draw() (yellowbrick.classifier.rocauc. ROCAUC' 75 graw() (yellowbrick.text.tsne. TSNE Visualizer 7 i%),
%), 89 111

189

Yellowbrick Documentation, 445 v0.5

draw_joint () (yellow- k), 111
brick.features.jointplot. JointPlot Visualizer ~ £it () (yellowbrick.cluster.elbow. KElbow Visualizer 7
7 k), 67 %), 96

draw_xy) (yellowbrick.features.jointplot. JointPlot Visufilit€) (yellowbrick.cluster.silhouette.SilhouetteVisualizer
7 i), 67 7 i%k), 98

£it O (yellowbrick.features.importances. FeatureImportances

F 7 i%k), 59

Featurelmportances (yellow- £i¢ () (yellowbrick.features.jointplot. JointPlot Visualizer
brick.features.importances P4y %k), 58 Fik), 67

finalize() (yellowbrick.classifier.class_balance. Class Bglgpye (yellowbrick.features. pca. PCA Decomposition
7 %), 91 %), 53

finalize () (yellowbrick.classifier. classification_reporteGlasyificotipdbenerfeatures. scatter. Scatter Visualizer
7 i%k), 82 Fik), 64

finalize () (yellowbrick.classifier.confusion__matriz. C‘f’i]@{sjonﬂ(ﬂy}.&wbrick. regressor.alphas. AlphaSelection
7 k), 85 k), 1T

finalize() (yellowbrick.classifier.rocauc. ROCAUC ¢4+ () (yellowbrick.regressor.alphas. ManualAlphaSelection
7 i%k), 89 i), 79

finalize) (yellowbrick.cluster.elbow. KElbow Visualizeg i+ () (yellowbrick.regressor.residuals. ResidualsPlot
7 i%), 96 k), 71

finalize () (yellowbrick.cluster.silhouette.SilhouetteVigualiper (yellowbrick.text. freqdist. Frequency Visualizer
7rik), 98 k), 106

finalize () (yellowbrick.features.importances. Feature[qzi)g(tym(%llowbm-ck. text.tsne. TSNEVisualizer 7 i%),
7 %), 59 111

finalize () (yellowbrick.features.jointplot. JointPlot VisppligtencyVisualizer (yellowbrick.text.freqdist P #4
7 ik), 67 %), 105

finalize () (yellowbrick.features.pca.PCADecomposition
7 i%k), 53

finalize () (yellowbrick.features.pcoords. ParallelCoordgedtesolor_cycle () (f& yellowbrick.style.colors F53
7 i%k), 50 W), 146

finalize () (yellowbrick.features.radviz. Radial Visualizer
7rik), 41

finalize() (yellowbrick.features.scatter.Scatter Visuali?&intPlotVisualizer (yellowbrick. features.jointplot
Fik), 64 Fayk), 65

finalize () (yellowbrick.regressor. alphas.AlphaSelectiok
k), 17

finalize () (yellowbrick.regressor.residuals. PredictiongrEr:(L)?"OWVisualizer (yellowbrick.cluster.elbow 7 &
Jrik), 74 ®), 95

finalize () (yellowbrick.regressor.residuals. Residuals Pfgf
7 i), 11 make_transformer () (yellow-

finalize () (yellowbrick.text.freqdist. Frequency Visualizer . . . L

. brick.text.tsne. TSNE Visualizer 7 k),

7 i%k), 106 11

finalize() (yellowbrick.text.tsne. TSNEVisualizer

190 %5l

Yellowbrick Documentation, & %5 v0.5

ManualAlphaSelection (yellow- S
brick.regressor.alphas F 49 %), 77 ScatterVisualizer (yellowbrick.features.scatter
N a9 %), 63
score() (yellowbrick.classifier.class_balance. ClassBalance
normalize(') | - (yello}w— k), 01
szk:f catures.radviz. Radial Visualizer # score () (yellowbrick.classifier.classification__report. ClassificationRep
A7), A k), 82
normalizers (yellow- score () (yellowbrick.classifier.confusion_matriz. ConfusionMatriz
brick.features.pcoords. ParallelCoordinates . .
e 7rik), 85
A1), 50 score() (yellowbrick.classifier.rocauc. ROCAUC 7
NULL_CLASS (yellowbrick.text.tsne. TSNE Visualizer %), 89
Lt P} <
Mik), 111 score() (yellowbrick.regressor.residuals. PredictionError
P 7rik), 74
llowbrick. .residuals. ResidualsPlot
ParallelCoordinates (yellowbrick.features.pcoords score() (‘ye OWOTICR-TEGTESSOT. TESAUALS. [Es1AUatsto
" 7rik), 71
e R), 48 hetic() (& yellowbrick.styl d Hi3k
t theti ick. .
PCADecomposition (yellowbrick.features.pca % &4 set-aes q,e) 1118 (& yellowbrick.style.remod 4
%), 52 o
t_col d llowbrick.style.palettes ¥
poof () (yellowbrick.features.jointplot.Joz'ntPlotVz'sualz'z??? ~color_codes() (f yellowbrick.style.palettes 1%
Jrik). 67 Hed), 148
/)
t_palett lowbrick.style. d F3
PredictionError (yellowbrick.regressor.residuals + set-pa 614:() (& yellowbrick.style.remod 423%:¥),
w9 %), 73 -
) set_style() (#& wyellowbrick.style.rcmod #E¥e),
R 149

RadialVisualizer (yellowbrick.features.radviz ¥ &4
%), 40

RadViz() (f& yellowbrick.features.radviz 423), 41

Rank1D (yellowbrick.features.rankd ¥ &9%k), 44

Rank2D (yellowbrick.features.rankd ¥ 493), 45

ranking_methods (yellow-
brick.features.rankd. Rank1D J&1t), 45

ranking methods
brick.features.rankd. Rank2D J&tt), 46

reset_defaults() ({& yellowbrick.style.rcmod 423

(yellow-

SilhouetteVisualizer

brick.cluster.silhouette ¥ 84k), 97

(yellow-

T

ThreshViz () (f& yellowbrick.classifier.threshold F23
), 93

transform() (yellow-
brick.features.pca. PCA Decomposition
7ri%), b4

TSNEVisualizer (yellowbrick.text.tsne ¥ 453%), 110

), 149 Y
reset_orig() (f yellowbrick.style.rcmod A3k ¥), yellowbrick. anscombe (Hi¥k), 37

149 yellowbrick.classifier.class_balance (F3#),
ResidualsPlot (yellowbrick.regressor.residuals P #% 91

' . yellowbrick.classifier.classification_report

resolve_colo?s() (f£ yellowbrick.style.colors 23 (iik), 81

), 146 yellowbrick.classifier.confusion_matrix (4%
ROCAUC (yellowbrick.classifier.rocauc P oy k), 87 i

), 84

e] 191

Yellowbrick Documentation, 445 v0.5

yellowbrick.
yellowbrick.
yellowbrick.
yellowbrick.
yellowbrick.
yellowbrick.
yellowbrick.
yellowbrick.
yellowbrick.
yellowbrick.
yellowbrick.

yellowbrick

yellowbrick.
yellowbrick.
yellowbrick.
yellowbrick.
yellowbrick.
yellowbrick.

classifier.rocauc (#£3), 87
classifier.threshold (#£3), 93
cluster.elbow (F2H), 95
cluster.silhouette (#£3), 97
features.importances (4£3), 58
.jointplot (#£3k), 65
.pca (##3¥k), 52
.pcoords (F2#k), 48
.radviz (F#z), 40

.rankd (#£3), 44

scatter (#2#), 63
.regressor.alphas (#3#), 76
regressor.residuals (#£3), 69, 73
style.colors (#2#k), 146
style.palettes (#23&), 147

features
features
features
features

features

features.

style.rcmod (#£3&), 148

text.freqdist (#£3), 105

text.tsne (A2#), 110

192

EL]

	Visualizers
	特征可视化
	分类可视化
	回归可视化
	聚类可视化
	文本可视化

	获取帮助
	开源
	目录
	快速开始
	模型选择教程
	Visualizers and API
	User Testing Instructions
	Contributing
	Effective Matplotlib
	About
	Changelog

	索引和表格
	Python 模块索引
	索引

