Source code for yellowbrick.classifier.prcurve

# yellowbrick.classifier.prcurve
# Implements Precision-Recall curves for classification models.
#
# Author:  Benjamin Bengfort
# Created: Tue Sep 04 16:47:19 2018 -0400
#
# Copyright (C) 2018 The scikit-yb developers
# For license information, see LICENSE.txt
#
# ID: prcurve.py [48889c4] benjamin@bengfort.com $

"""
Implements Precision-Recall curves for classification models.
"""

##########################################################################
## Imports
##########################################################################

import warnings
import numpy as np

from sklearn.preprocessing import label_binarize
from sklearn.multiclass import OneVsRestClassifier
from sklearn.utils.multiclass import type_of_target
from sklearn.metrics import average_precision_score
from sklearn.metrics import precision_recall_curve as sk_precision_recall_curve

from yellowbrick.style.colors import resolve_colors
from yellowbrick.exceptions import YellowbrickWarning
from yellowbrick.exceptions import ModelError, NotFitted
from yellowbrick.exceptions import YellowbrickValueError
from yellowbrick.classifier.base import ClassificationScoreVisualizer


# Target Type Constants
# TODO: These can now be imported from utils.target
BINARY = "binary"
MULTICLASS = "multiclass"

# Average Metric Constants
MICRO = "micro"

# Default Values
DEFAULT_ISO_F1_VALUES = (0.2, 0.4, 0.6, 0.8)


##########################################################################
## PrecisionRecallCurve Visualizer
##########################################################################


[docs]class PrecisionRecallCurve(ClassificationScoreVisualizer): """ Precision-Recall curves are a metric used to evaluate a classifier's quality, particularly when classes are very imbalanced. The precision-recall curve shows the tradeoff between precision, a measure of result relevancy, and recall, a measure of completeness. For each class, precision is defined as the ratio of true positives to the sum of true and false positives, and recall is the ratio of true positives to the sum of true positives and false negatives. A large area under the curve represents both high recall and precision, the best case scenario for a classifier, showing a model that returns accurate results for the majority of classes it selects. Parameters ---------- estimator : estimator A scikit-learn estimator that should be a classifier. If the model is not a classifier, an exception is raised. If the internal model is not fitted, it is fit when the visualizer is fitted, unless otherwise specified by ``is_fitted``. ax : matplotlib Axes, default: None The axes to plot the figure on. If not specified the current axes will be used (or generated if required). classes : list of str, default: None The class labels to use for the legend ordered by the index of the sorted classes discovered in the ``fit()`` method. Specifying classes in this manner is used to change the class names to a more specific format or to label encoded integer classes. Some visualizers may also use this field to filter the visualization for specific classes. For more advanced usage specify an encoder rather than class labels. colors : list of strings, default: None An optional list or tuple of colors to colorize the curves when ``per_class=True``. If ``per_class=False``, this parameter will be ignored. If both ``colors`` and ``cmap`` are provided, ``cmap`` will be ignored. cmap : string or Matplotlib colormap, default: None An optional string or Matplotlib colormap to colorize the curves when ``per_class=True``. If ``per_class=False``, this parameter will be ignored. If both ``colors`` and ``cmap`` are provided, ``cmap`` will be ignored. encoder : dict or LabelEncoder, default: None A mapping of classes to human readable labels. Often there is a mismatch between desired class labels and those contained in the target variable passed to ``fit()`` or ``score()``. The encoder disambiguates this mismatch ensuring that classes are labeled correctly in the visualization. fill_area : bool, default: True Fill the area under the curve (or curves) with the curve color. ap_score : bool, default: True Annotate the graph with the average precision score, a summary of the plot that is computed as the weighted mean of precisions at each threshold, with the increase in recall from the previous threshold used as the weight. micro : bool, default: True If multi-class classification, draw the precision-recall curve for the micro-average of all classes. In the multi-class case, either micro or per-class must be set to True. Ignored in the binary case. iso_f1_curves : bool, default: False Draw ISO F1-Curves on the plot to show how close the precision-recall curves are to different F1 scores. iso_f1_values : tuple , default: (0.2, 0.4, 0.6, 0.8) Values of f1 score for which to draw ISO F1-Curves per_class : bool, default: False If multi-class classification, draw the precision-recall curve for each class using a OneVsRestClassifier to compute the recall on a per-class basis. In the multi-class case, either micro or per-class must be set to True. Ignored in the binary case. fill_opacity : float, default: 0.2 Specify the alpha or opacity of the fill area (0 being transparent, and 1.0 being completly opaque). line_opacity : float, default: 0.8 Specify the alpha or opacity of the lines (0 being transparent, and 1.0 being completly opaque). is_fitted : bool or str, default="auto" Specify if the wrapped estimator is already fitted. If False, the estimator will be fit when the visualizer is fit, otherwise, the estimator will not be modified. If "auto" (default), a helper method will check if the estimator is fitted before fitting it again. force_model : bool, default: False Do not check to ensure that the underlying estimator is a classifier. This will prevent an exception when the visualizer is initialized but may result in unexpected or unintended behavior. kwargs : dict Keyword arguments passed to the visualizer base classes. Attributes ---------- target_type_ : str Either ``"binary"`` or ``"multiclass"`` depending on the type of target fit to the visualizer. If ``"multiclass"`` then the estimator is wrapped in a OneVsRestClassifier classification strategy. score_ : float or dict of floats Average precision, a summary of the plot as a weighted mean of precision at each threshold, weighted by the increase in recall from the previous threshold. In the multiclass case, a mapping of class/metric to the average precision score. precision_ : array or dict of array with shape=[n_thresholds + 1] Precision values such that element i is the precision of predictions with score >= thresholds[i] and the last element is 1. In the multiclass case, a mapping of class/metric to precision array. recall_ : array or dict of array with shape=[n_thresholds + 1] Decreasing recall values such that element i is the recall of predictions with score >= thresholds[i] and the last element is 0. In the multiclass case, a mapping of class/metric to recall array. classes_ : ndarray of shape (n_classes,) The class labels observed while fitting. class_count_ : ndarray of shape (n_classes,) Number of samples encountered for each class during fitting. Examples -------- >>> from yellowbrick.classifier import PrecisionRecallCurve >>> from sklearn.model_selection import train_test_split >>> from sklearn.svm import LinearSVC >>> X_train, X_test, y_train, y_test = train_test_split(X, y) >>> viz = PrecisionRecallCurve(LinearSVC()) >>> viz.fit(X_train, y_train) >>> viz.score(X_test, y_test) >>> viz.show() Notes ----- To support multi-label classification, the estimator is wrapped in a ``OneVsRestClassifier`` to produce binary comparisons for each class (e.g. the positive case is the class and the negative case is any other class). The precision-recall curve can then be computed as the micro-average of the precision and recall for all classes (by setting micro=True), or individual curves can be plotted for each class (by setting per_class=True). Note also that some parameters of this visualizer are learned on the ``score`` method, not only on ``fit``. .. seealso:: https://bit.ly/2kOIeCC """ def __init__( self, estimator, ax=None, classes=None, colors=None, cmap=None, encoder=None, fill_area=True, ap_score=True, micro=True, iso_f1_curves=False, iso_f1_values=DEFAULT_ISO_F1_VALUES, per_class=False, fill_opacity=0.2, line_opacity=0.8, is_fitted="auto", force_model=False, **kwargs ): super(PrecisionRecallCurve, self).__init__( estimator, ax=ax, classes=classes, encoder=encoder, is_fitted=is_fitted, force_model=force_model, **kwargs ) # Set visual params self.fill_area = fill_area self.ap_score = ap_score self.colors = colors self.cmap = cmap self.micro = micro self.iso_f1_curves = iso_f1_curves self.iso_f1_values = set(iso_f1_values) self.per_class = per_class self.fill_opacity = fill_opacity self.line_opacity = line_opacity if self.micro and self.per_class: warnings.warn( "micro=True is ignored;" "specify per_class=False to draw a PR curve after micro-averaging", YellowbrickWarning, )
[docs] def fit(self, X, y=None): """ Fit the classification model; if ``y`` is multi-class, then the estimator is adapted with a ``OneVsRestClassifier`` strategy, otherwise the estimator is fit directly. """ # The target determines what kind of estimator is fit ttype = type_of_target(y) self._target_labels = np.unique(y) if ttype.startswith(MULTICLASS): self.target_type_ = MULTICLASS self.estimator = OneVsRestClassifier(self.estimator) # Use label_binarize to create multi-label output for OneVsRestClassifier Y = label_binarize(y, classes=self._target_labels) elif ttype.startswith(BINARY): # Different variable is used here to prevent transformation Y = y self.target_type_ = BINARY else: raise YellowbrickValueError( ( "{} does not support target type '{}', " "please provide a binary or multiclass single-output target" ).format(self.__class__.__name__, ttype) ) # Fit the model and return self return super(PrecisionRecallCurve, self).fit(X, Y)
[docs] def score(self, X, y): """ Generates the Precision-Recall curve on the specified test data. Returns ------- score_ : float Average precision, a summary of the plot as a weighted mean of precision at each threshold, weighted by the increase in recall from the previous threshold. """ # If we don't do this check, then it is possible that OneVsRestClassifier # has not correctly been fitted for multi-class targets. if not hasattr(self, "target_type_"): raise NotFitted.from_estimator(self, "score") # Must perform label binarization before calling super if self.target_type_ == MULTICLASS: # Use label_binarize to create multi-label output for OneVsRestClassifier y = label_binarize(y, classes=self._target_labels) # Call super to check if fitted and to compute classes_ # Note that self.score_ computed in super will be overridden below super(PrecisionRecallCurve, self).score(X, y) # Compute the prediction/threshold scores y_scores = self._get_y_scores(X) # Handle binary and multiclass cases to create correct data structure if self.target_type_ == BINARY: self.precision_, self.recall_, _ = sk_precision_recall_curve(y, y_scores) self.score_ = average_precision_score(y, y_scores) else: self.precision_, self.recall_, self.score_ = {}, {}, {} # Compute PRCurve for all classes for i, class_i in enumerate(self.classes_): self.precision_[class_i], self.recall_[ class_i ], _ = sk_precision_recall_curve(y[:, i], y_scores[:, i]) self.score_[class_i] = average_precision_score(y[:, i], y_scores[:, i]) # Compute micro average PR curve self.precision_[MICRO], self.recall_[MICRO], _ = sk_precision_recall_curve( y.ravel(), y_scores.ravel() ) self.score_[MICRO] = average_precision_score(y, y_scores, average=MICRO) # Draw the figure self.draw() # Return a score between 0 and 1 if self.target_type_ == BINARY: return self.score_ return self.score_[MICRO]
[docs] def draw(self): """ Draws the precision-recall curves computed in score on the axes. """ # set the colors self._colors = resolve_colors( n_colors=len(self.classes_), colormap=self.cmap, colors=self.colors ) if self.iso_f1_curves: for f1 in self.iso_f1_values: x = np.linspace(0.01, 1) y = f1 * x / (2 * x - f1) self.ax.plot(x[y >= 0], y[y >= 0], color="#333333", alpha=0.2) self.ax.annotate("$f_1={:0.1f}$".format(f1), xy=(0.9, y[45] + 0.02)) if self.target_type_ == BINARY: return self._draw_binary() return self._draw_multiclass()
def _draw_binary(self): """ Draw the precision-recall curves in the binary case """ self._draw_pr_curve(self.recall_, self.precision_, label="Binary PR curve") self._draw_ap_score(self.score_) def _draw_multiclass(self): """ Draw the precision-recall curves in the multiclass case """ if self.per_class: colors = dict(zip(self.classes_, self._colors)) for cls in self.classes_: precision = self.precision_[cls] recall = self.recall_[cls] label = "PR for class {} (area={:0.2f})".format(cls, self.score_[cls]) self._draw_pr_curve(recall, precision, label=label, color=colors[cls]) elif self.micro: precision = self.precision_[MICRO] recall = self.recall_[MICRO] label = "Micro-average PR for all classes" self._draw_pr_curve(recall, precision, label=label) self._draw_ap_score(self.score_[MICRO]) def _draw_pr_curve(self, recall, precision, label=None, color=None): """ Helper function to draw a precision-recall curve with specified settings """ self.ax.step( recall, precision, alpha=self.line_opacity, where="post", label=label, color=color, ) if self.fill_area and not self.per_class: self.ax.fill_between( recall, precision, step="post", alpha=self.fill_opacity, color=color ) def _draw_ap_score(self, score, label=None): """ Helper function to draw the AP score annotation """ label = label or "Avg. precision={:0.2f}".format(score) if self.ap_score: self.ax.axhline(y=score, color="r", ls="--", label=label)
[docs] def finalize(self): """ Finalize the figure by adding titles, labels, and limits. """ self.set_title("Precision-Recall Curve for {}".format(self.name)) self.ax.legend(loc="lower left", frameon=True) self.ax.set_xlim([0.0, 1.0]) self.ax.set_ylim([0.0, 1.0]) self.ax.set_ylabel("Precision") self.ax.set_xlabel("Recall") self.ax.grid(False)
def _get_y_scores(self, X): """ The ``precision_recall_curve`` metric requires target scores that can either be the probability estimates of the positive class, confidence values, or non-thresholded measures of decisions (as returned by a "decision function"). """ # TODO refactor shared method with ROCAUC # Resolution order of scoring functions attrs = ("decision_function", "predict_proba") # Return the first resolved function for attr in attrs: try: method = getattr(self.estimator, attr, None) if method: # Compute the scores from the decision function y_scores = method(X) # Return only the positive class for binary predict_proba if self.target_type_ == BINARY and y_scores.ndim == 2: return y_scores[:, 1] return y_scores except AttributeError: # Some Scikit-Learn estimators have both probability and # decision functions but override __getattr__ and raise an # AttributeError on access. continue # If we've gotten this far, we can't do anything raise ModelError( ( "{} requires an estimator with predict_proba or decision_function." ).format(self.__class__.__name__) )
# Alias for PrecisionRecallCurve PRCurve = PrecisionRecallCurve ########################################################################## ## Quick Method ##########################################################################
[docs]def precision_recall_curve( estimator, X_train, y_train, X_test=None, y_test=None, ax=None, classes=None, colors=None, cmap=None, encoder=None, fill_area=True, ap_score=True, micro=True, iso_f1_curves=False, iso_f1_values=DEFAULT_ISO_F1_VALUES, per_class=False, fill_opacity=0.2, line_opacity=0.8, is_fitted="auto", force_model=False, show=True, **kwargs ): """Precision-Recall Curve Precision-Recall curves are a metric used to evaluate a classifier's quality, particularly when classes are very imbalanced. The precision-recall curve shows the tradeoff between precision, a measure of result relevancy, and recall, a measure of completeness. For each class, precision is defined as the ratio of true positives to the sum of true and false positives, and recall is the ratio of true positives to the sum of true positives and false negatives. A large area under the curve represents both high recall and precision, the best case scenario for a classifier, showing a model that returns accurate results for the majority of classes it selects. Parameters ---------- estimator : estimator A scikit-learn estimator that should be a classifier. If the model is not a classifier, an exception is raised. If the internal model is not fitted, it is fit when the visualizer is fitted, unless otherwise specified by ``is_fitted``. X_train : ndarray or DataFrame of shape n x m A feature array of n instances with m features the model is trained on. Used to fit the visualizer and also to score the visualizer if test splits are not directly specified. y_train : ndarray or Series of length n An array or series of target or class values. Used to fit the visualizer and also to score the visualizer if test splits are not specified. X_test : ndarray or DataFrame of shape n x m, default: None An optional feature array of n instances with m features that the model is scored on if specified, using X_train as the training data. y_test : ndarray or Series of length n, default: None An optional array or series of target or class values that serve as actual labels for X_test for scoring purposes. ax : matplotlib Axes, default: None The axes to plot the figure on. If not specified the current axes will be used (or generated if required). classes : list of str, default: None The class labels to use for the legend ordered by the index of the sorted classes discovered in the ``fit()`` method. Specifying classes in this manner is used to change the class names to a more specific format or to label encoded integer classes. Some visualizers may also use this field to filter the visualization for specific classes. For more advanced usage specify an encoder rather than class labels. colors : list of strings, default: None An optional list or tuple of colors to colorize the curves when ``per_class=True``. If ``per_class=False``, this parameter will be ignored. If both ``colors`` and ``cmap`` are provided, ``cmap`` will be ignored. cmap : string or Matplotlib colormap, default: None An optional string or Matplotlib colormap to colorize the curves when ``per_class=True``. If ``per_class=False``, this parameter will be ignored. If both ``colors`` and ``cmap`` are provided, ``cmap`` will be ignored. encoder : dict or LabelEncoder, default: None A mapping of classes to human readable labels. Often there is a mismatch between desired class labels and those contained in the target variable passed to ``fit()`` or ``score()``. The encoder disambiguates this mismatch ensuring that classes are labeled correctly in the visualization. fill_area : bool, default: True Fill the area under the curve (or curves) with the curve color. ap_score : bool, default: True Annotate the graph with the average precision score, a summary of the plot that is computed as the weighted mean of precisions at each threshold, with the increase in recall from the previous threshold used as the weight. micro : bool, default: True If multi-class classification, draw the precision-recall curve for the micro-average of all classes. In the multi-class case, either micro or per-class must be set to True. Ignored in the binary case. iso_f1_curves : bool, default: False Draw ISO F1-Curves on the plot to show how close the precision-recall curves are to different F1 scores. iso_f1_values : tuple , default: (0.2, 0.4, 0.6, 0.8) Values of f1 score for which to draw ISO F1-Curves per_class : bool, default: False If multi-class classification, draw the precision-recall curve for each class using a OneVsRestClassifier to compute the recall on a per-class basis. In the multi-class case, either micro or per-class must be set to True. Ignored in the binary case. fill_opacity : float, default: 0.2 Specify the alpha or opacity of the fill area (0 being transparent, and 1.0 being completly opaque). line_opacity : float, default: 0.8 Specify the alpha or opacity of the lines (0 being transparent, and 1.0 being completly opaque). is_fitted : bool or str, default="auto" Specify if the wrapped estimator is already fitted. If False, the estimator will be fit when the visualizer is fit, otherwise, the estimator will not be modified. If "auto" (default), a helper method will check if the estimator is fitted before fitting it again. force_model : bool, default: False Do not check to ensure that the underlying estimator is a classifier. This will prevent an exception when the visualizer is initialized but may result in unexpected or unintended behavior. show: bool, default: True If True, calls ``show()``, which in turn calls ``plt.show()`` however you cannot call ``plt.savefig`` from this signature, nor ``clear_figure``. If False, simply calls ``finalize()`` kwargs : dict Keyword arguments passed to the visualizer base classes. Returns ------- viz : PrecisionRecallCurve Returns the visualizer that generates the curve visualization. """ # Instantiate the visualizer viz = PRCurve( estimator, ax=ax, classes=classes, colors=colors, cmap=cmap, encoder=encoder, fill_area=fill_area, ap_score=ap_score, micro=micro, iso_f1_curves=iso_f1_curves, iso_f1_values=iso_f1_values, per_class=per_class, fill_opacity=fill_opacity, line_opacity=line_opacity, is_fitted=is_fitted, force_model=force_model, **kwargs ) # Fit the visualizer viz.fit(X_train, y_train) # Score the visualizer if X_test is not None and y_test is not None: viz.score(X_test, y_test) elif X_test is not None or y_test is not None: raise YellowbrickValueError( "both X_test and y_test are required if one is specified" ) else: viz.score(X_train, y_train) # Draw the final visualization if show: viz.show() else: viz.finalize() # Return the visualizer return viz