模型选择教程

在本教程中,我们将查看各种 Scikit-Learn 模型的分数,并使用 Yellowbrick 的可视化诊断工具对其进行比较,以便为我们的数据选择最佳模型。

模型选择三元组

关于机器学习的讨论常常集中在模型选择上。无论是逻辑回归、随机森林、贝叶斯方法,还是人工神经网络,机器学习实践者通常都能很快地展示他们的偏好。这主要是因为历史原因。尽管现代的第三方机器学习库使得各类模型的部署显得微不足道,但传统上,即使是其中一种算法的应用和调优也需要多年的研究。因此,与其他模型相比,机器学习实践者往往对特定的(并且更可能是熟悉的)模型有强烈的偏好。

然而,模型选择比简单地选择“正确”或“错误”算法更加微妙。实践中的工作流程包括:

  1. 选择和/或设计最小和最具预测性的特性集
  2. 从模型家族中选择一组算法,并且
  3. 优化算法超参数以优化性能。

模型选择三元组 是由Kumar 等人,在 2015 年的 SIGMOD 论文中首次提出。在他们的论文中,谈论到下一代为预测建模而构建的数据库系统的开发。作者很中肯地表示,由于机器学习在实践中具有高度实验性,因此迫切需要这样的系统。“模型选择,”他们解释道,“是迭代的和探索性的,因为(模型选择三元组)的空间通常是无限的,而且通常不可能让分析师事先知道哪个(组合)将产生令人满意的准确性和/或洞察力。”

最近,许多工作流程已经通过网格搜索方法、标准化 API 和基于 GUI 的应用程序实现了自动化。然而,在实践中,人类的直觉和指导可以比穷举搜索更有效地专注于模型质量。通过可视化模型选择过程,数据科学家可以转向最终的、可解释的模型,并避免陷阱和陷阱。

Yellowbrick 库是一个针对机器学习的可视化诊断平台,它允许数据科学家控制模型选择过程。Yellowbrick 用一个新的核心对象扩展了Scikit-Learn 的 API: Visualizer。Visualizers 允许可视化模型作为Scikit-Learn管道过程的一部分进行匹配和转换,从而在高维数据的转换过程中提供可视化诊断。

关于数据

本教程使用来自 UCI Machine Learning Repository 的修改过的蘑菇数据集版本。我们的目标是基于蘑菇的特定,去预测蘑菇是有毒的还是可食用的。

这些数据包括与伞菌目(Agaricus)和环柄菇属(Lepiota)科中23种烤蘑菇对应的假设样本描述。 每一种都被确定为绝对可食用,绝对有毒,或未知的可食用性和不推荐(后一类与有毒物种相结合)。

我们的文件“agaricus-lepiota.txt”,包含3个名义上有价值的属性信息和8124个蘑菇实例的目标值(4208个可食用,3916个有毒)。

让我们用Pandas加载数据。

import os
import pandas as pd

names = [
    'class',
    'cap-shape',
    'cap-surface',
    'cap-color'
]

mushrooms = os.path.join('data','agaricus-lepiota.txt')
dataset   = pd.read_csv(mushrooms)
dataset.columns = names
dataset.head()
. class cap-shape cap-surface cap-color
0 edible bell smooth white
1 poisonous convex scaly white
2 edible convex smooth gray
3 edible convex scaly yellow
4 edible bell smooth white
features = ['cap-shape', 'cap-surface', 'cap-color']
target   = ['class']

X = dataset[features]
y = dataset[target]

特征提取

我们的数据,包括目标参数,都是分类型数据。为了使用机器学习,我们需要将这些值转化为数值型数据。为了从数据集中提取这一点,我们必须使用Scikit-Learn的转换器(transformers)将输入数据集转换为适合模型的数据集。幸运的是,Sckit-Learn提供了一个转换器,用于将分类标签转换为整数: sklearn.preprocessing.LabelEncoder。不幸的是,它一次只能转换一个向量,所以我们必须对它进行调整,以便将它应用于多个列。

from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.preprocessing import LabelEncoder, OneHotEncoder


class EncodeCategorical(BaseEstimator, TransformerMixin):
    """
    Encodes a specified list of columns or all columns if None.
    """

    def __init__(self, columns=None):
        self.columns  = [col for col in columns]
        self.encoders = None

    def fit(self, data, target=None):
        """
        Expects a data frame with named columns to encode.
        """
        # Encode all columns if columns is None
        if self.columns is None:
            self.columns = data.columns

        # Fit a label encoder for each column in the data frame
        self.encoders = {
            column: LabelEncoder().fit(data[column])
            for column in self.columns
        }
        return self

    def transform(self, data):
        """
        Uses the encoders to transform a data frame.
        """
        output = data.copy()
        for column, encoder in self.encoders.items():
            output[column] = encoder.transform(data[column])

        return output

建模与评估

评估分类器的常用指标

精确度(Precision) 是正确的阳性结果的数量除以所有阳性结果的数量(例如,我们预测的可食用蘑菇实际上有多少?)

召回率(Recall) 是正确的阳性结果的数量除以应该返回的阳性结果的数量(例如,我们准确预测了多少有毒蘑菇是有毒的?)

F1分数(F1 score) 是测试准确度的一种衡量标准。它同时考虑测试的精确度和召回率来计算分数。F1得分可以解释为精度和召回率的加权平均值,其中F1得分在1处达到最佳值,在0处达到最差值。

precision = true positives / (true positives + false positives)

recall = true positives / (false negatives + true positives)

F1 score = 2 * ((precision * recall) / (precision + recall))

现在我们准备好作出一些预测了!

让我们构建一种评估多个估算器(multiple estimators)的方法 —— 首先使用传统的数值分数(我们稍后将与Yellowbrick库中的一些可视化诊断进行比较)。

from sklearn.metrics import f1_score
from sklearn.pipeline import Pipeline


def model_selection(X, y, estimator):
    """
    Test various estimators.
    """
    y = LabelEncoder().fit_transform(y.values.ravel())
    model = Pipeline([
         ('label_encoding', EncodeCategorical(X.keys())),
         ('one_hot_encoder', OneHotEncoder()),
         ('estimator', estimator)
    ])

    # Instantiate the classification model and visualizer
    model.fit(X, y)

    expected  = y
    predicted = model.predict(X)

    # Compute and return the F1 score (the harmonic mean of precision and recall)
    return (f1_score(expected, predicted))
# Try them all!
from sklearn.svm import LinearSVC, NuSVC, SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegressionCV, LogisticRegression, SGDClassifier
from sklearn.ensemble import BaggingClassifier, ExtraTreesClassifier, RandomForestClassifier
model_selection(X, y, LinearSVC())
0.65846308387744845
model_selection(X, y, NuSVC())
0.63838842388991346
model_selection(X, y, SVC())
0.66251459711950167
model_selection(X, y, SGDClassifier())
0.69944182052382997
model_selection(X, y, KNeighborsClassifier())
0.65802139037433149
model_selection(X, y, LogisticRegressionCV())
0.65846308387744845
model_selection(X, y, LogisticRegression())
0.65812609897010799
model_selection(X, y, BaggingClassifier())
0.687643484132343
model_selection(X, y, ExtraTreesClassifier())
0.68713648045448383
model_selection(X, y, RandomForestClassifier())
0.69317131158367451

初步模型评估

根据上面F1分数的结果,哪个模型表现最好?

可视化模型评估

现在,让我们重构模型评估函数,使用Yellowbrick的ClassificationReport类,这是一个模型可视化工具,可以显示精确度、召回率和F1分数。这个可视化的模型分析工具集成了数值分数以及彩色编码的热力图,以支持简单的解释和检测,特别是对于我们用例而言非常相关(性命攸关!)的第一类错误(Type I error)和第二类错误(Type II error)的细微差别。

第一类错误 (或 "假阳性(false positive)" ) 是检测一种不存在的效应(例如,当蘑菇实际上是可以食用的时候,它是有毒的)。

第二类错误 (或 “假阴性”"false negative" ) 是未能检测到存在的效应(例如,当蘑菇实际上有毒时,却认为它是可以食用的)。

from sklearn.pipeline import Pipeline
from yellowbrick.classifier import ClassificationReport


def visual_model_selection(X, y, estimator):
    """
    Test various estimators.
    """
    y = LabelEncoder().fit_transform(y.values.ravel())
    model = Pipeline([
         ('label_encoding', EncodeCategorical(X.keys())),
         ('one_hot_encoder', OneHotEncoder()),
         ('estimator', estimator)
    ])

    # Instantiate the classification model and visualizer
    visualizer = ClassificationReport(model, classes=['edible', 'poisonous'])
    visualizer.fit(X, y)
    visualizer.score(X, y)
    visualizer.poof()
visual_model_selection(X, y, LinearSVC())
_images/modelselect_linear_svc.png
visual_model_selection(X, y, NuSVC())
_images/modelselect_nu_svc.png
visual_model_selection(X, y, SVC())
_images/modelselect_svc.png
visual_model_selection(X, y, SGDClassifier())
_images/modelselect_sgd_classifier.png
visual_model_selection(X, y, KNeighborsClassifier())
_images/modelselect_kneighbors_classifier.png
visual_model_selection(X, y, LogisticRegressionCV())
_images/modelselect_logistic_regression_cv.png
visual_model_selection(X, y, LogisticRegression())
_images/modelselect_logistic_regression.png
visual_model_selection(X, y, BaggingClassifier())
_images/modelselect_bagging_classifier.png
visual_model_selection(X, y, ExtraTreesClassifier())
_images/modelselect_extra_trees_classifier.png
visual_model_selection(X, y, RandomForestClassifier())
_images/modelselect_random_forest_classifier.png

检验

  1. 现在,哪种模型看起来最好?为什么?
  2. 哪一个模型最有可能救你的命?
  3. 可视化模型评估与数值模型评价,体验起来有何不同?