Source code for yellowbrick.anscombe

# yellowbrick.anscombe
# Plots Anscombe's Quartet as an illustration of the importance of visualization.
#
# Author:   Benjamin Bengfort
# Created:  Wed May 18 11:38:25 2016 -0400
#
# Copyright (C) 2016 The sckit-yb developers
# For license information, see LICENSE.txt
#
# ID: anscombe.py [0bfa366] [email protected] $

"""
Plots Anscombe's Quartet as an illustration of the importance of visualization.
"""

##########################################################################
## Imports
##########################################################################

import numpy as np
import matplotlib.pyplot as plt

from yellowbrick.bestfit import draw_best_fit
from yellowbrick.style import get_color_cycle


##########################################################################
## Anscombe Data Arrays
##########################################################################

ANSCOMBE = [
    np.array(
        [
            [10.0, 8.0, 13.0, 9.0, 11.0, 14.0, 6.0, 4.0, 12.0, 7.0, 5.0],
            [8.04, 6.95, 7.58, 8.81, 8.33, 9.96, 7.24, 4.26, 10.84, 4.82, 5.68],
        ]
    ),
    np.array(
        [
            [10.0, 8.0, 13.0, 9.0, 11.0, 14.0, 6.0, 4.0, 12.0, 7.0, 5.0],
            [9.14, 8.14, 8.74, 8.77, 9.26, 8.10, 6.13, 3.10, 9.13, 7.26, 4.74],
        ]
    ),
    np.array(
        [
            [10.0, 8.0, 13.0, 9.0, 11.0, 14.0, 6.0, 4.0, 12.0, 7.0, 5.0],
            [7.46, 6.77, 12.74, 7.11, 7.81, 8.84, 6.08, 5.39, 8.15, 6.42, 5.73],
        ]
    ),
    np.array(
        [
            [8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 19.0, 8.0, 8.0, 8.0],
            [6.58, 5.76, 7.71, 8.84, 8.47, 7.04, 5.25, 12.50, 5.56, 7.91, 6.89],
        ]
    ),
]


[docs]def anscombe(): """ Creates 2x2 grid plot of the 4 anscombe datasets for illustration. """ _, ((axa, axb), (axc, axd)) = plt.subplots(2, 2, sharex="col", sharey="row") colors = get_color_cycle() for arr, ax, color in zip(ANSCOMBE, (axa, axb, axc, axd), colors): x = arr[0] y = arr[1] # Set the X and Y limits ax.set_xlim(0, 15) ax.set_ylim(0, 15) # Draw the points in the scatter plot ax.scatter(x, y, c=color) # Draw the linear best fit line on the plot draw_best_fit(x, y, ax, c=color) return (axa, axb, axc, axd)
if __name__ == "__main__": anscombe() plt.show()